In Description Logic (DL), we distinguish between

- conceptual or terminological knowledge, stored in an ontology O (often also called TBox T); and
- data, stored in a data instance D (often also called an ABox A).

In Description Logic (DL), we distinguish between

- conceptual or terminological knowledge, stored in an ontology O (often also called TBox T); and
- data, stored in a data instance D (often also called an ABox A).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

A pair $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ is a knowledge base (KB).

In Description Logic (DL), we distinguish between

- conceptual or terminological knowledge, stored in an ontology O (often also called TBox T); and
- data, stored in a data instance D (often also called an ABox A).

A pair $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ is a knowledge base (KB).

 \mathcal{D} is a finite set of assertions of the form A(b), R(a, b) with

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

- A a concept name (unary relation);
- R a role name (binary relation);
- and a, b individual names.

In Description Logic (DL), we distinguish between

- conceptual or terminological knowledge, stored in an ontology O (often also called TBox T); and
- data, stored in a data instance D (often also called an ABox A).

A pair $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ is a knowledge base (KB).

 \mathcal{D} is a finite set of assertions of the form A(b), R(a, b) with

- A a concept name (unary relation);
- R a role name (binary relation);
- and a, b individual names.

 \mathcal{O} is a finite set of concept inclusions (CIs) of the form $C \sqsubseteq D$ with C, D concepts from a DL \mathcal{L} .

 \mathcal{EL} -concepts are constructed according to

 $C, D := A \mid \top \mid C \sqcap D \mid \exists R.C$

 $\ensuremath{\mathcal{EL}}\xspace$ are constructed according to

 $C, D := A \mid \top \mid C \sqcap D \mid \exists R.C$

Typically used for large ontologies (for instance SNOMED CT).

 $\ensuremath{\mathcal{EL}}\xspace$ are constructed according to

 $C, D := A \mid \top \mid C \sqcap D \mid \exists R.C$

Typically used for large ontologies (for instance SNOMED CT). Some concept inclusions:

 $\exists support.FootballClub \ \sqsubseteq \ Footballfan \\ FootballClub \ \sqsubseteq \ Club \sqcap \exists competes_in.FootballLeague \\ \end{cases}$

 $\ensuremath{\mathcal{EL}}\xspace$ are constructed according to

 $C, D := A \mid \top \mid C \sqcap D \mid \exists R.C$

Typically used for large ontologies (for instance SNOMED CT). Some concept inclusions:

 $\exists support.FootballClub \sqsubseteq Footballfan \\ FootballClub \sqsubseteq Club \sqcap \exists competes_in.FootballLeague$

Data instance:

FootballClub(LiverpooIFC), competes_in(LiverpooIFC, PremierLeague), FootballLeague(PremierLeague)

ALC-concepts are constructed according to

$$C, D := A \mid \top \mid C \sqcap D \mid \neg C \mid \exists R.C$$

We set $\forall R.C := \neg \exists R. \neg C$ and $\bot = \neg \top$.

ALC-concepts are constructed according to

$$C, D := A \mid \top \mid C \sqcap D \mid \neg C \mid \exists R.C$$

We set $\forall R.C := \neg \exists R. \neg C$ and $\bot = \neg \top$.

Step towards expresssive DLs underpinning OWL standard.

ALC-concepts are constructed according to

$$C, D := A \mid \top \mid C \sqcap D \mid \neg C \mid \exists R.C$$

We set $\forall R.C := \neg \exists R. \neg C$ and $\bot = \neg \top$.

Step towards expressive DLs underpinning OWL standard. Some concept inclusions:

> Footballfan \sqsubseteq \neg Cricketfan FootballClub \sqsubseteq \forall competes_in.FootballLeague

ALC-concepts are constructed according to

$$C, D := A \mid \top \mid C \sqcap D \mid \neg C \mid \exists R.C$$

We set $\forall R.C := \neg \exists R. \neg C$ and $\bot = \neg \top$.

Step towards expressive DLs underpinning OWL standard. Some concept inclusions:

> Footballfan $\Box \neg$ Cricketfan FootballClub $\Box \forall$ competes_in.FootballLeague

Sometimes we also use inverse roles, R^- .

FootballLeague $\sqsubseteq \forall competes_in^-$.FootballClub

The resulting languages are denoted \mathcal{ELI} and \mathcal{ALCI} , respectively.

Reasoning

Description logics are interpreted in interpretations

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$

with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, in the expected way. We write $C^{\mathcal{I}}$ for the inductively defined extension of C in \mathcal{I} and use

$$\mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D}, \quad (\mathcal{O}, \mathcal{D}) \models \mathcal{R}(a, b), \quad (\mathcal{O}, \mathcal{D}) \models \mathcal{A}(a)$$

as in first-order logic. Open world semantics!

Reasoning

Description logics are interpreted in interpretations

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$

with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, in the expected way. We write $C^{\mathcal{I}}$ for the inductively defined extension of C in \mathcal{I} and use

$$\mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D}, \quad (\mathcal{O}, \mathcal{D}) \models \mathcal{R}(a, b), \quad (\mathcal{O}, \mathcal{D}) \models \mathcal{A}(a)$$

as in first-order logic. Open world semantics!

Deciding these entailments is

- in PTime for \mathcal{EL} ;
- ► ExpTime-complete for \mathcal{ELI} , \mathcal{ALC} , \mathcal{ALCI} .

The Separability Problem

- Let $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ and $E = (E^+, E^-)$ with
 - ► $E^+ \subseteq ind(\mathcal{D})$ a set of positive example
 - ► $E^- \subseteq ind(\mathcal{D})$ a set of negative examples,

A concept *C* (sometimes also formula or query *C*) separates *E* under \mathcal{K} if it applies to all $a \in E^+$ but not to any $a \in E^-$.

The Separability Problem

Let $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ and $E = (E^+, E^-)$ with

- ► $E^+ \subseteq ind(\mathcal{D})$ a set of positive example
- ► $E^- \subseteq ind(\mathcal{D})$ a set of negative examples,

A concept *C* (sometimes also formula or query *C*) separates *E* under \mathcal{K} if it applies to all $a \in E^+$ but not to any $a \in E^-$.

We aim to determine and investigate a few important dimensions of separation and the problem of deciding separability.

We do not yet look into the problem learning C from E in the sense of finding some good generalisation of E.

Let $\mathcal{K}_1 = (\emptyset, \mathcal{D})$ where

- $\begin{aligned} \mathcal{D} &= \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}. \end{aligned}$
- Let $E^+ = \{\text{Peter}, \text{Piotr}\} \text{ and } E^- = \{\text{Kazue}\}.$
- Task: Separate *E* using an ALCI-concept.

Let $\mathcal{K}_1 = (\emptyset, \mathcal{D})$ where

 $\begin{aligned} \mathcal{D} &= \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}. \end{aligned}$

Let $E^+ = \{\text{Peter}, \text{Piotr}\} \text{ and } E^- = \{\text{Kazue}\}.$

Task: Separate *E* using an ALCI-concept. Person separates *E* since

 $\mathcal{K}_1 \models \text{Person}(\text{Peter})$ $\mathcal{K}_1 \models \text{Person}(\text{Piotr})$ $\mathcal{K}_1 \not\models \text{Person}(\text{Kazue})$

Let $\mathcal{K}_1 = (\emptyset, \mathcal{D})$ where

 $\mathcal{D} = \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}.$

Let $E^+ = \{\text{Peter}, \text{Piotr}\} \text{ and } E^- = \{\text{Kazue}\}.$

Task: Separate *E* using an ALCI-concept. Person separates *E* since

 $\mathcal{K}_1 \models \text{Person}(\text{Peter})$ $\mathcal{K}_1 \models \text{Person}(\text{Piotr})$ $\mathcal{K}_1 \not\models \text{Person}(\text{Kazue})$ Not intended as only due to incompleteness.

Let $\mathcal{K}_1 = (\emptyset, \mathcal{D})$ where

 $\begin{aligned} \mathcal{D} &= \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}. \end{aligned}$

Let $E^+ = \{\text{Peter}, \text{Piotr}\} \text{ and } E^- = \{\text{Kazue}\}.$

Task: Separate *E* using an ALCI-concept. Person separates *E* since

 $\mathcal{K}_1 \models \text{Person}(\text{Peter})$ $\mathcal{K}_1 \models \text{Person}(\text{Piotr})$ $\mathcal{K}_1 \not\models \text{Person}(\text{Kazue})$

Not intended as only due to incompleteness. Let

 $\mathcal{O} = \{\exists citizen_of. \top \sqsubseteq Person\}$

and $\mathcal{K}_2 = (\mathcal{O}, \mathcal{D})$. Then Person no longer separates.

Let $\mathcal{K}_1 = (\emptyset, \mathcal{D})$ where

 $\begin{aligned} \mathcal{D} &= \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}. \end{aligned}$

Let $E^+ = \{\text{Peter}, \text{Piotr}\} \text{ and } E^- = \{\text{Kazue}\}.$

Task: Separate *E* using an ALCI-concept. Person separates *E* since

 $\mathcal{K}_1 \models \text{Person}(\text{Peter})$ $\mathcal{K}_1 \models \text{Person}(\text{Piotr})$ $\mathcal{K}_1 \not\models \text{Person}(\text{Kazue})$

Not intended as only due to incompleteness. Let

 $\mathcal{O} = \{\exists citizen_of.\top \sqsubseteq Person\}$

and $\mathcal{K}_2 = (\mathcal{O}, \mathcal{D})$. Then Person no longer separates. The concept $\exists citizen_of.EuropC$ still separates.

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$.

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

1. Weak vs strong separability in both cases: $\mathcal{K} \models C(a)$, for all $a \in E^+$ weak: $\mathcal{K} \not\models C(a)$, for all $a \in E^$ strong: $\mathcal{K} \models \neg C(a)$, for all $a \in E^-$

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

1. Weak vs strong separability in both cases: $\mathcal{K} \models C(a)$, for all $a \in E^+$ weak: $\mathcal{K} \not\models C(a)$, for all $a \in E^$ strong: $\mathcal{K} \models \neg C(a)$, for all $a \in E^-$

To ensure strong separability in the previous example add:

 $\exists citizen_of. \{Japan\} \sqsubseteq \neg \exists citizen_of. EuropC$

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

1. Weak vs strong separability in both cases: $\mathcal{K} \models C(a)$, for all $a \in E^+$ weak: $\mathcal{K} \not\models C(a)$, for all $a \in E^$ strong: $\mathcal{K} \models \neg C(a)$, for all $a \in E^-$

To ensure strong separability in the previous example add:

 $\exists citizen_of. \{Japan\} \sqsubseteq \neg \exists citizen_of. EuropC$

2. Language of the separating formula $\mathcal{EL}, \mathcal{ALC}, \mathcal{ALCI}, FO, (U)CQs, \dots$

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

1. Weak vs strong separability in both cases: $\mathcal{K} \models C(a)$, for all $a \in E^+$ weak: $\mathcal{K} \not\models C(a)$, for all $a \in E^$ strong: $\mathcal{K} \models \neg C(a)$, for all $a \in E^-$

To ensure strong separability in the previous example add:

 $\exists citizen_of. \{Japan\} \sqsubseteq \neg \exists citizen_of. EuropC$

- **2.** Language of the separating formula $\mathcal{EL}, \mathcal{ALC}, \mathcal{ALCI}, FO, (U)CQs, \dots$
- **3. Additional signature restrictions on** *C* For instance: only admit geography terms.

Input Knowledge base \mathcal{K} , $E = (E^+, E^-)$. **Question** Is there a concept *C* separating *E*?

1. Weak vs strong separability in both cases: $\mathcal{K} \models C(a)$, for all $a \in E^+$ weak: $\mathcal{K} \not\models C(a)$, for all $a \in E^$ strong: $\mathcal{K} \models \neg C(a)$, for all $a \in E^-$

To ensure strong separability in the previous example add:

 $\exists citizen_of. \{Japan\} \sqsubseteq \neg \exists citizen_of. EuropC$

- **2.** Language of the separating formula $\mathcal{EL}, \mathcal{ALC}, \mathcal{ALCI}, FO, (U)CQs, \dots$
- **3. Additional signature restrictions on** *C* For instance: only admit geography terms.
- **4. Projective vs non-projective separability** Can *C* use symbols that do not occur in \mathcal{K} ?

Projective vs non-projective separability

Consider $\mathcal{K} = (\emptyset, \mathcal{D})$ with

 $\mathcal{D} = \{born_in(Peter, France), citizen_of(Peter, France), \\ born_in(Kazue, Japan), citizen_of(Kazue, Italy)\}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = - のへで

Can we weakly separate $E = ({Peter}, {Kazue})?$

Projective vs non-projective separability

Consider $\mathcal{K} = (\emptyset, \mathcal{D})$ with

 $\mathcal{D} = \{born_in(Peter, France), citizen_of(Peter, France), \\ born_in(Kazue, Japan), citizen_of(Kazue, Italy)\}$

Can we weakly separate $E = ({Peter}, {Kazue})?$

The FO-formula

 $\exists y (\text{citizen_of}(x, y) \land \text{born_in}(x, y))$

weakly separates, but does not correspond to any \mathcal{ALCI} -concept.

Projective vs non-projective separability

Consider $\mathcal{K} = (\emptyset, \mathcal{D})$ with

 $\mathcal{D} = \{born_in(Peter, France), citizen_of(Peter, France), \\ born_in(Kazue, Japan), citizen_of(Kazue, Italy)\}$

Can we weakly separate $E = ({Peter}, {Kazue})?$

The FO-formula

 $\exists y (\text{citizen_of}(x, y) \land \text{born_in}(x, y))$

weakly separates, but does not correspond to any \mathcal{ALCI} -concept.

But still the following ALCI-concept separates:

```
\forall citizen_of.EuropC \rightarrow \exists born_in.EuropC
```

Note that EuropC does not occur in \mathcal{K} .

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed from atoms A(y) and $R(y_1, y_2)$ using \exists and \land . We assume one free variable (answer variable). A union of conjunctive queries (UCQ) is a disjunction of CQs.

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed from atoms A(y) and $R(y_1, y_2)$ using \exists and \land . We assume one free variable (answer variable). A union of conjunctive queries (UCQ) is a disjunction of CQs.

For any UCQ q(x), $(\mathcal{O}, \mathcal{D}) \models q(a)$ is defined as in FO. Has been investigated extensively over the past 15 by the DL community.

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed from atoms A(y) and $R(y_1, y_2)$ using \exists and \land . We assume one free variable (answer variable). A union of conjunctive queries (UCQ) is a disjunction of CQs.

For any UCQ q(x), $(\mathcal{O}, \mathcal{D}) \models q(a)$ is defined as in FO. Has been investigated extensively over the past 15 by the DL community.

Associate with any \mathcal{D} , *a* a CQ

$arphi_{\mathcal{D}, \boldsymbol{a}}$

obtained by replacing individuals by variables and existentially quantifying over all variables distinct from the variables *x* replacing *a*.

Logically strongest CQ $\varphi(x)$ with $\mathcal{D} \models \varphi(a)$.

For

 $\mathcal{D} = \{ citizen_of(Peter, UK), citizen_of(Piotr, Poland), \\ citizen_of(Kazue, Japan), \\ EuropC(UK), EuropC(Poland), \\ Person(Peter), Person(Piotr) \}$

we have

$$\begin{split} \varphi_{\mathcal{D},\mathsf{Peter}}(x) &= \exists \vec{y} \; \mathsf{citizen_of}(x, y_{\mathsf{UK}}) \land \mathsf{citizen_of}(y_{\mathsf{Piotr}}, y_{\mathsf{Poland}}) \land \\ & \mathsf{citizen_of}(y_{\mathsf{Kazue}}, y_{\mathsf{Japan}}) \land \\ & \mathsf{EuropC}(y_{\mathsf{UK}}) \land \mathsf{EuropC}(y_{\mathsf{Poland}}) \land \\ & \mathsf{Person}(x) \land \mathsf{Person}(y_{\mathsf{Piotr}}). \end{split}$$

Weak Separability for \mathcal{ALCI}

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ with \mathcal{O} in \mathcal{ALCI} and $E = (E^+, E^-)$ are given.

Then the following conditions are equivalent:

- *E* is projectively ALCI-separable;
- ► *E* is FO-separable;
- ► *E* is UCQ-separable;
Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ with \mathcal{O} in \mathcal{ALCI} and $E = (E^+, E^-)$ are given.

Then the following conditions are equivalent:

- *E* is projectively ALCI-separable;
- ► *E* is FO-separable;
- ► *E* is UCQ-separable;

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ with \mathcal{O} in \mathcal{ALCI} and $E = (E^+, E^-)$ are given.

Then the following conditions are equivalent:

- *E* is projectively ALCI-separable;
- ► *E* is FO-separable;
- ► *E* is UCQ-separable;
- ► the UCQ

 $arphi_{\mathcal{D}, \boldsymbol{a}}$ *a*∈*E*+

separates E.

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ with \mathcal{O} in \mathcal{ALCI} and $E = (E^+, E^-)$ are given.

Then the following conditions are equivalent:

- \blacktriangleright *E* is projectively ALCI-separable;
- E is FO-separable;
- E is UCQ-separable;
- the UCQ

$$\bigvee_{a\in E^+} \varphi_{\mathcal{D},a}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

separates E.

►
$$\mathcal{K} \not\models \bigvee_{a \in E^+} \varphi_{\mathcal{D},a}(b)$$
 for $b \in E^-$.

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ with \mathcal{O} in \mathcal{ALCI} and $E = (E^+, E^-)$ are given.

Then the following conditions are equivalent:

- \blacktriangleright *E* is projectively ALCI-separable;
- E is FO-separable;
- E is UCQ-separable;
- the UCQ

$$igvee_{{\sf a}\in{\sf E}^+}arphi_{{\cal D},{\sf a}}$$

separates E.

•
$$\mathcal{K} \not\models \bigvee_{a \in E^+} \varphi_{\mathcal{D},a}(b)$$
 for $b \in E^-$.

Weak projective separability is polynomial time equivalent to the complement of rooted UCQ evaluation relative to \mathcal{ALCI} KBs.

The latter problem is coNEXPTIME-complete (*Lutz 2008*).

Weak Separability: further discussion

- ▶ Point 5 implies: Projective \mathcal{ALCI} -separability is anti-monotone w.r.t. strengthening the ontology: if $\mathcal{O} \subseteq \mathcal{O}'$ and separability holds for $(\mathcal{O}', \mathcal{D})$, then it holds for $(\mathcal{O}, \mathcal{D})$.
- Slightly weaker version of the result holds for ALC.

Weak Separability: further discussion

- ▶ Point 5 implies: Projective \mathcal{ALCI} -separability is anti-monotone w.r.t. strengthening the ontology: if $\mathcal{O} \subseteq \mathcal{O}'$ and separability holds for $(\mathcal{O}', \mathcal{D})$, then it holds for $(\mathcal{O}, \mathcal{D})$.
- Slightly weaker version of the result holds for ALC.
- Non-projective ALCI-separability: harder to analyse as it is very "syntax dependent". Still NExpTime-complete.

For strong separability, additional symbols do not make a difference. So we do not distinguish between projective and non-projective strong separability.

For strong separability, additional symbols do not make a difference. So we do not distinguish between projective and non-projective strong separability.

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$, $E = (E^+, E^-)$, with \mathcal{O} an \mathcal{ALCI} - ontology. Then the following conditions are equivalent:

- \blacktriangleright *E* is strongly ALCI-separable;
- E is strongly FO-separable;
- E is strongly UCQ-separable;
- ► the UCQ $\bigvee_{a \in E^+} \varphi_{D,a}$ strongly separates *E*;

For strong separability, additional symbols do not make a difference. So we do not distinguish between projective and non-projective strong separability.

Assume $\mathcal{K} = (\mathcal{O}, \mathcal{D})$, $E = (E^+, E^-)$, with \mathcal{O} an \mathcal{ALCI} - ontology. Then the following conditions are equivalent:

- *E* is strongly ALCI-separable;
- E is strongly FO-separable;
- E is strongly UCQ-separable;
- ► the UCQ $\bigvee_{a \in E^+} \varphi_{D,a}$ strongly separates *E*;
- ▶ for all $a \in E^+$ and $b \in E^-$, the KB

 $(\mathcal{O}, \mathcal{D}_{a=b}\mathcal{D})$

is unsatisfiable.

 $\mathcal{D}_{a=b}\mathcal{D}$ obtained from \mathcal{D} by adding a copy of \mathcal{D} and then identifying *a* and *b*'.

An \mathcal{O} -type is a maximal subset of the set of subconcepts of \mathcal{O} that is satisfiable. There are exponentially many \mathcal{O} -types.

An \mathcal{O} -type is a maximal subset of the set of subconcepts of \mathcal{O} that is satisfiable. There are exponentially many \mathcal{O} -types.

Theorem For $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ an \mathcal{ALCI} -KB, the following conditions are equivalent:

 \blacktriangleright *E* is strongly ALCI-separable;

An \mathcal{O} -type is a maximal subset of the set of subconcepts of \mathcal{O} that is satisfiable. There are exponentially many \mathcal{O} -types.

Theorem For $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ an \mathcal{ALCI} -KB, the following conditions are equivalent:

- *E* is strongly ALCI-separable;
- For all a ∈ E⁺ and b ∈ E⁻, there do not exist models I and J of K such that a^I and b^J realize the same O-type;

An \mathcal{O} -type is a maximal subset of the set of subconcepts of \mathcal{O} that is satisfiable. There are exponentially many \mathcal{O} -types.

Theorem For $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ an \mathcal{ALCI} -KB, the following conditions are equivalent:

- *E* is strongly ALCI-separable;
- For all $a \in E^+$ and $b \in E^-$, there do not exist models \mathcal{I} and \mathcal{J} of \mathcal{K} such that $a^{\mathcal{I}}$ and $b^{\mathcal{J}}$ realize the same \mathcal{O} -type;
- ► The ALCI-concept $t_1 \sqcup \cdots \sqcup t_n$ strongly separates E, t_1, \ldots, t_n the O-types realizable in some K, a, $a \in E^-$.

An \mathcal{O} -type is a maximal subset of the set of subconcepts of \mathcal{O} that is satisfiable. There are exponentially many \mathcal{O} -types.

Theorem For $\mathcal{K} = (\mathcal{O}, \mathcal{D})$ an \mathcal{ALCI} -KB, the following conditions are equivalent:

- *E* is strongly ALCI-separable;
- For all $a \in E^+$ and $b \in E^-$, there do not exist models \mathcal{I} and \mathcal{J} of \mathcal{K} such that $a^{\mathcal{I}}$ and $b^{\mathcal{J}}$ realize the same \mathcal{O} -type;
- ► The ALCI-concept $t_1 \sqcup \cdots \sqcup t_n$ strongly separates E, t_1, \ldots, t_n the O-types realizable in some $K, a, a \in E^-$.

Strong separability is ExpTime-complete

Strong Separability: further discussion

► A variation of the above works for ALC.

Strong Separability: further discussion

- A variation of the above works for ALC.
- Strong ALCI-separability is coNP-complete in data complexity.

Impact of Signature Restrictions

None of the equivalences regarding separating power holds. For instance,

- ► as none of the symbols in D is necessarily in Σ, $\bigvee_{a \in E^+} \varphi_{D,a}$ does not work;
- anti-monotonicity does not hold as new axioms might introduce new conept names used in separatinf signature.

Impact of Signature Restrictions

None of the equivalences regarding separating power holds. For instance,

- as none of the symbols in D is necessarily in Σ,
 \(\not\)_{a∈E⁺} \(\varphi_{D,a}\) does not work;
- anti-monotonicity does not hold as new axioms might introduce new conept names used in separatinf signature.

	without Σ	with Σ
weak projective \mathcal{ALCI}	NExpTime-c	2ExpTime-c
strong ALCI	ExpTime-c	2ExpTime-c

Impact of Signature Restrictions

None of the equivalences regarding separating power holds. For instance,

- as none of the symbols in D is necessarily in Σ,
 V_{a∈E⁺} φ_{D,a} does not work;
- anti-monotonicity does not hold as new axioms might introduce new conept names used in separatinf signature.

	without Σ	with Σ
weak projective ALCI	NExpTime-c	2ExpTime-c
strong ALCI	ExpTime-c	2ExpTime-c

	without Σ	with Σ
projective weak	rooted UCQ answering	conservative extensions
strong	satisfiability	interpolant existence

 $\mathcal{O} \cup \mathcal{O}^{\text{new}}$ is a conservative extension of \mathcal{O} if

$$\mathcal{O} \cup \mathcal{O}^{\mathsf{new}} \models C \sqsubseteq D \quad \Rightarrow \quad \mathcal{O} \models C \sqsubseteq D$$

for sig($C \sqsubseteq D$) \subseteq sig(\mathcal{O}).

 $\mathcal{O}\cup \mathcal{O}^{\text{new}}$ is a conservative extension of \mathcal{O} if

$$\mathcal{O} \cup \mathcal{O}^{\mathsf{new}} \models C \sqsubseteq D \quad \Rightarrow \quad \mathcal{O} \models C \sqsubseteq D$$

for sig($C \sqsubseteq D$) \subseteq sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in \mathcal{ALCI} is 2ExpTime-complete.

 $\mathcal{O}\cup\mathcal{O}^{\text{new}}$ is a conservative extension of \mathcal{O} if

$$\mathcal{O} \cup \mathcal{O}^{\mathsf{new}} \models C \sqsubseteq D \quad \Rightarrow \quad \mathcal{O} \models C \sqsubseteq D$$

for sig($C \sqsubseteq D$) \subseteq sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in \mathcal{ALCI} is 2ExpTime-complete.

Reduction of conservative extensions to weak separability:

 $C \sqsubseteq D$ is witness for non-conservativity

- $\Rightarrow \neg C \sqcup D \text{ separates } E = (\{a\}, \{b\}) \text{ under } \mathcal{K} = (\mathcal{O}^*, \mathcal{D}) \text{ and } \Sigma = sig(\mathcal{O}) \text{ for }$
 - $\blacktriangleright \mathcal{D} = \{A(a), B(b)\}.$
 - ▶ $\mathcal{O}^* = (\mathcal{O} \cup \mathcal{O}^{\text{new}})^A \cup \mathcal{O}^B$, with \mathcal{O}^C relativization of \mathcal{O} to C.

 $\mathcal{O}\cup\mathcal{O}^{\text{new}}$ is a conservative extension of \mathcal{O} if

$$\mathcal{O} \cup \mathcal{O}^{\mathsf{new}} \models C \sqsubseteq D \quad \Rightarrow \quad \mathcal{O} \models C \sqsubseteq D$$

for sig($C \sqsubseteq D$) \subseteq sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in \mathcal{ALCI} is 2ExpTime-complete.

Reduction of conservative extensions to weak separability:

 $C \sqsubseteq D$ is witness for non-conservativity

- $\Rightarrow \neg C \sqcup D \text{ separates } E = (\{a\}, \{b\}) \text{ under } \mathcal{K} = (\mathcal{O}^*, \mathcal{D}) \text{ and } \Sigma = sig(\mathcal{O}) \text{ for }$
 - $\blacktriangleright \mathcal{D} = \{A(a), B(b)\}.$
 - ▶ $\mathcal{O}^* = (\mathcal{O} \cup \mathcal{O}^{\text{new}})^A \cup \mathcal{O}^B$, with \mathcal{O}^C relativization of \mathcal{O} to C.

Converse not obvious but proofs via emptiness for tree automata similar.

Assume $ALCIO^u$ (nominals and the universal role u.) A concept I is a Craig interpolant for $C \sqsubseteq D$ if

 $sig(I) \subseteq sig(C) \cap sig(D), \models C \sqsubseteq I, \models I \sqsubseteq D$

Assume $ALCIO^u$ (nominals and the universal role u.) A concept I is a Craig interpolant for $C \sqsubseteq D$ if

 $sig(I) \subseteq sig(C) \cap sig(D), \models C \sqsubseteq I, \models I \sqsubseteq D$

DLs with nominals do not have Craig interpolation, so the existence of *I* does not follow from $\models C \sqsubseteq D$.

Assume $ALCIO^u$ (nominals and the universal role u.) A concept I is a Craig interpolant for $C \sqsubseteq D$ if

 $sig(I) \subseteq sig(C) \cap sig(D), \models C \sqsubseteq I, \models I \sqsubseteq D$

DLs with nominals do not have Craig interpolation, so the existence of *I* does not follow from $\models C \sqsubseteq D$. Theorem [Artale et al 22] Interpolant existence is 2ExpTime complete for $ALCO^{u}$ and $ALCIO^{u}$.

Assume $ALCIO^u$ (nominals and the universal role u.) A concept I is a Craig interpolant for $C \sqsubseteq D$ if

 $sig(I) \subseteq sig(C) \cap sig(D), \models C \sqsubseteq I, \models I \sqsubseteq D$

DLs with nominals do not have Craig interpolation, so the existence of *I* does not follow from $\models C \sqsubseteq D$. Theorem [Artale et al 22] Interpolant existence is 2ExpTime complete for \mathcal{ALCO}^u and \mathcal{ALCTO}^u . Encode \mathcal{K} , *a* and \mathcal{K} , *b* in \mathcal{ALCTO}^u -concepts $C_{\Sigma,a}$ and $C_{\Sigma,b}$ sharing only Σ such that

I strongly Σ-separates $\{a\}$ from $\{b\}$ in \mathcal{K}

$$\Leftrightarrow \mathcal{K} \models I(a) \text{ and } \mathcal{K} \models \neg I(b)$$

$$\Leftrightarrow \models C_{\Sigma,a} \sqsubseteq I \text{ and } \models C_{\Sigma,b} \sqsubseteq \neg I$$

 \Leftrightarrow *I* is Craig interpolant for $C_{\Sigma,a} \sqsubseteq \neg C_{\Sigma,b}$

Literature

- Jung, Lutz, Pulcini, Wolter: Logical separability of labeled data examples under ontologies. KR 2020 and AIJ 2022.
- Funk, Jung, Lutz, Pulcini, Wolter: Learning Description Logic Concepts: When can Positive and Negative Examples be Separated? IJCAI 2019
- Jung, Lutz, Pulcini, Wolter: Separating Positive and Negative Data Examples by Concepts and Formulas: The Case of Restricted Signatures. KR 2021
- Artale, Jung, Mazzullo, Ozaki, Wolter: Living Without Beth and Craig: Explicit Definitions and Interpolants in Description Logics with Nominals. AAAI 2021 and TOCL 2023.

Separability in Horn DLS

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

Introduction

Horn Description Logics are an important family of DLs in practice: \Rightarrow many real-world ontologies are (almost) Horn

Defining feature: Horn DLs are preserved under taking products

Basic members:

 $-\mathscr{E}\mathscr{L} \qquad C := \top |A| C \sqcap C |\exists r.C$

∃support.FootballClub, Club □ ∃competes_in.League

- \mathscr{ELI} $C := \top |A| C \sqcap C | \exists R . C$ for a role name or an inverse role R

 \exists lives In . North America $\sqcap \exists$ child⁻ . Rich

weak separability (strong separability meaningless without negation/ \perp) projective=non-projective

signature restrictions have no influence

Concepts ⇔ Databases

Simulation $(\mathcal{D}, a) \preceq (\mathcal{D}', a')$ is a relation $S \subseteq \operatorname{ind}(\mathcal{D}) \times \operatorname{ind}(\mathcal{D}')$ with aSa' and

- bSb' and $B(b) \in \mathcal{D}$ implies $B(b') \in \mathcal{D}'$
- bSb' and $r(b,c) \in \mathcal{D}$ implies cSc' and $r(b',c') \in \mathcal{D}'$ for some c'

Simulation \approx Homomorphism if \mathscr{D} is tree-shaped

Direct Product

Direct Product $\mathscr{J} = \mathscr{I}_1 \times \mathscr{I}_2$ of interpretations $\mathscr{I}_1, \mathscr{I}_2$ is defined by

$$\begin{split} \Delta^{\mathscr{F}} &= \Delta^{\mathscr{F}_1} \times \Delta^{\mathscr{F}_2} \\ A^{\mathscr{F}} &= \{ (d_1, d_2) \mid d_i \in A^{\mathscr{F}_i} \text{ für } i = 1, 2 \} \\ r^{\mathscr{F}} &= \{ ((d_1, d_2), (e_1, e_2)) \mid (d_i, e_i) \in r^{\mathscr{F}_i} \text{ für } i = 1, 2 \} \end{split}$$

Direct product of databases defined accordingly

Properties of the Direct Product

For \mathscr{EL} and \mathscr{ELI} -concepts *C* and databases $\mathscr{D}, \mathscr{D}'$ we have:

 $\mathscr{D} \times \mathscr{D}' \models C(a, a') \quad \Leftrightarrow \quad \mathscr{D} \models C(a) \text{ and } \quad \mathscr{D}' \models C(a')$

Product of any interpretation with $\mathscr{C}\mathscr{L}$ -concept results in $\mathscr{C}\mathscr{L}$ -concept Not true for $\mathscr{C}\mathscr{L}\mathscr{I}$: $a \times 1 = (b,1)$

Product of *n* interpretations/databases with 2 domain elements has size 2^{n} !

Product Algorithm for $\mathscr{E}\mathscr{L}$

[Baader et al, 90ies, Zarrieß & Turhan 2013, Barcelo & Romero 2017]

Characterization Let $E^+ = \{(\mathcal{D}_1, a_1), \dots, (\mathcal{D}_n, a_n)\}, E^-$ be sets of examples. TFAE:

- **1.** there is an \mathscr{CL} -concept separating E^+ and E^-
- **2.** $(\Pi_i \mathcal{D}_i, (a_1, \dots, a_n)) \not\leq (\mathcal{D}, b)$ for all $(\mathcal{D}, b) \in E^-$ (product simulation test)

In case that all \mathcal{D}_i "are" \mathscr{EL} -concepts, we can compute the separating concept:

1. compute product $\mathcal{D}^* := \mathcal{D}_1 \times \ldots \times \mathcal{D}_n$

2. if \mathscr{D}^* passes product simulation test for each $(\mathscr{D}, b) \in E^-$, return \mathscr{D}^* (as a concept)

3. otherwise return "no separating concept"

Remarks

- if \mathcal{D}_i are not \mathscr{CL} -concepts, we can still extract separating concept
- exponential time algorithm (product simulation test is NP-complete)
- characterization (with appropriate simulation) works for & LS, but PSpace...ExpTime (however, product algorithm does **not** work!)
 [J, Lutz, Wolter 2019]

Extension 1: \mathscr{CL} -ontologies

Answering \mathscr{EL} -concept queries C(a) under \mathscr{EL} -ontologies \mathcal{O} :

 $\mathcal{O}, \mathcal{D} \models C(a)$ if $a \in C^{\mathscr{I}}$ for all models \mathscr{I} of \mathcal{O} and \mathcal{D}

$\mathscr{E}\mathscr{L}$ -universal model

Given \mathcal{O}, \mathcal{D} , we can compute in polytime model $\mathscr{F}_{\mathcal{O}, \mathcal{D}}$ of \mathcal{O}, \mathcal{D} such that $\mathcal{O}, \mathcal{D} \models C(a)$ iff $\mathscr{F}_{\mathcal{O}, \mathcal{D}} \models C(a)$ for all $\mathscr{C}\mathcal{L}$ -concepts C

Chase-Like procedure:

For $\mathcal{O} = \{A \sqsubseteq \exists s . B, B \sqsubseteq \exists r . C, C \sqsubseteq A\}$ and $\mathcal{D} = \{A(a)\}$ we get:

Extension 1: \mathscr{CL} -ontologies

\mathscr{CL} -universal model

Given \mathcal{O}, \mathcal{D} , we can compute in polytime model $\mathscr{F}_{\mathcal{O}, \mathcal{D}}$ of \mathcal{O}, \mathcal{D} such that $\mathcal{O}, \mathcal{D} \models C(a)$ iff $\mathscr{F}_{\mathcal{O}, \mathcal{D}} \models C(a)$ for all \mathscr{CL} -concepts C

Reduction of separability with ontologies to separability without ontologies

 $C \text{ separates } E^+ = \{(\mathscr{D}_1, a_1), \dots, (\mathscr{D}_n, a_n)\} \text{ and } E^- = \{(\mathscr{E}_1, a_1), \dots, (\mathscr{E}_k, a_k)\} \text{ under } \mathcal{O} \text{ iff } C \text{ separates } \{(\mathscr{I}_{\mathcal{O}, \mathscr{D}_1}, a_1), \dots, (\mathscr{I}_{\mathcal{O}, \mathscr{D}_n}, a_n)\} \text{ and } \{(\mathscr{I}_{\mathcal{O}, \mathscr{E}_1}, a_1), \dots, (\mathscr{I}_{\mathcal{O}, \mathscr{E}_k}, a_k)\}$

 \Rightarrow we can reuse product algorithm for $\mathscr{E}\mathscr{L}$

However

- complexity increases to ExpTime-complete
- size of smallest separating concept increases from poly to double exponential

[Funk 2019]
Extension 2: \mathscr{EII} -ontologies

\mathscr{CL} -universal model

Given \mathcal{O}, \mathcal{D} , we can compute in polytime model $\mathscr{I}_{\mathcal{O}, \mathcal{D}}$ of \mathcal{O}, \mathcal{D} such that $\mathcal{O}, \mathcal{D} \models C(a)$ iff $\mathscr{I}_{\mathcal{O}, \mathcal{D}} \models C(a)$ for all $\mathscr{C}\mathcal{L}$ -concepts C

\mathscr{ELI} -universal model

For every \mathcal{O}, \mathcal{D} , we can there is a model $\mathcal{F}_{\mathcal{O}, \mathcal{D}}$ of \mathcal{O}, \mathcal{D} such that $\mathcal{O}, \mathcal{D} \models C(a)$ iff $\mathcal{F}_{\mathcal{O}, \mathcal{D}} \models C(a)$ for all \mathscr{ELF} -concepts C

 \mathscr{ELF} -universal model is infinite (and there is no finite one), but **regular** and a representation can be computed in exponential time

Bad News regularity cannot be exploited: [Funk, J, Lutz, Pulcini, Wolter IJCAI 2019] separability in \mathscr{ELF} is **undecidable**, even for 2 positive + 1 negative example

(Notorious) open problem What about DL-Lite ontologies + \mathscr{ESS} -concept sep.?

Extension 3: Conjunctive Queries

We could also be interested in separability by conjunctive queries (CQs)

CQs generalize $\mathscr{EL}/\mathscr{ELI}$ -concepts

Duality Conjunctive queries \Leftrightarrow interpretations/databases

Answering conjunctive queries q(x) under $\mathscr{E}\mathscr{L}$ -ontologies \mathscr{O} :

 $\mathcal{O}, \mathcal{D} \models q(a)$ if $(\mathcal{I}_{q}, x) \rightarrow (\mathcal{I}, a)$ for all models \mathcal{I} of \mathcal{O} and \mathcal{D}

CQ-universal model for \mathscr{CL} -ontologies[Lutz, Toman, Wolter IJCAI 2009]Given \mathcal{O}, \mathcal{D} , there is model $\mathscr{I}_{\mathcal{O}, \mathcal{D}}$ of \mathcal{O}, \mathcal{D} such that $\mathcal{O}, \mathcal{D} \models q(a)$ iff $\mathscr{I}_{\mathcal{O}, \mathcal{D}} \models q(a)$ for all CQs q(x) $\mathscr{I}_{\mathcal{O}, \mathcal{D}}$ is generally infinite, butfinite representation can be computed in polynomial time

Extension 3: Conjunctive Queries

[Gutierrez-Basulto, J, Sabellek IJCAI 2018]

Characterization Let $E^+ = \{(\mathcal{D}_1, a_1), \dots, (\mathcal{D}_n, a_n)\}, E^-$ be sets of examples and \mathcal{O} an \mathscr{CL} -ontology. The following are equivalent:

- **1.** there is an CQ E^+ and E^-
- **2.** $(\prod_i \mathscr{I}_{\mathfrak{O}, \mathfrak{D}_i}, (a_1, \dots, a_n)) \not\rightarrow (\mathscr{I}_{\mathfrak{O}, \mathfrak{D}}, b)$ for all $(\mathfrak{D}, b) \in E^-$ (product homomorphism test)

Product homomorphism test is very similar to CQ separability without ontologies, which is coNExpTime-complete [Willard 2010, ten Cate & Dalmau 2015]

Product homomorphism test is decidable in coNExpTime exploiting the regularity [Gutierrez-Basulto, J, Sabellek IJCAI 2018]

Remarks

- separating CQs can be extracted, but double exponentially large (only exponential without ontologies)
- characterization (with appropriate universal model) works for \mathscr{ELF} , but CQ-separability under \mathscr{ELF} -ontologies also undecidable