Quick Introduction to Description Logic

In Description Logic (DL), we distinguish between

» conceptual or terminological knowledge, stored in an
ontology O (often also called TBox 7); and

» data, stored in a data instance D (often also called an
ABox A).

Quick Introduction to Description Logic

In Description Logic (DL), we distinguish between

» conceptual or terminological knowledge, stored in an
ontology O (often also called TBox 7); and

» data, stored in a data instance D (often also called an
ABox A).

A pair K = (O, D) is a knowledge base (KB).

Quick Introduction to Description Logic

In Description Logic (DL), we distinguish between

» conceptual or terminological knowledge, stored in an
ontology O (often also called TBox 7); and

» data, stored in a data instance D (often also called an
ABox A).

A pair K = (O, D) is a knowledge base (KB).

D is a finite set of assertions of the form A(b), R(a, b) with
» A a concept name (unary relation);
» R arole name (binary relation);
» and a, b individual names.

Quick Introduction to Description Logic

In Description Logic (DL), we distinguish between

» conceptual or terminological knowledge, stored in an
ontology O (often also called TBox 7); and

» data, stored in a data instance D (often also called an
ABox A).

A pair K = (O, D) is a knowledge base (KB).

D is a finite set of assertions of the form A(b), R(a, b) with
» A a concept name (unary relation);
» R arole name (binary relation);
» and a, b individual names.

O is a finite set of concept inclusions (Cls) of the form C C D
with C, D concepts from a DL L.

Description Logic ££

£ L-concepts are constructed according to

C,D:=A|T|CnD|3R.C

Description Logic ££

£ L-concepts are constructed according to
C,D-=A|T|CnD|3R.C

Typically used for large ontologies (for instance SNOMED CT).

Description Logic ££

£ L-concepts are constructed according to

C,D:=A|T|CnD|3R.C

Typically used for large ontologies (for instance SNOMED CT).

Some concept inclusions:

dsupport.FootballClub
FootballClub

L
L

Footballfan
Club M dcompetes_in.FootballLeague

Description Logic ££

£ L-concepts are constructed according to
C,D-=A|T|CnD|3R.C

Typically used for large ontologies (for instance SNOMED CT).

Some concept inclusions:

Footballfan
Club M dcompetes_in.FootballLeague

dsupport.FootballClub

C
FootballClub LC

Data instance:

FootballClub(LiverpoolFC),
competes_in(LiverpoolFC, PremierLeague),
FootballLeague(PremierLeague)

Description Logic ALC

ALC-concepts are constructed according to
C,D=A|T|CnD|-C|3R.C

We set VR.C := -dR.—-Cand L = —T.

Description Logic ALC

ALC-concepts are constructed according to
C,D=A|T|CnD|-C|3R.C

We set VR.C := -dR.—-Cand L = —T.

Step towards expresssive DLs underpinning OWL standard.

Description Logic ALC
ALC-concepts are constructed according to
C,D=A|T|CnD|-C|3R.C

We set VR.C .= —-dR.-C and L. = —T.
Step towards expresssive DLs underpinning OWL standard.
Some concept inclusions:

Footballfan C —Cricketfan
FootballClub C Vcompetes_in.FootballLeague

Description Logic ALC

ALC-concepts are constructed according to
C,D=A|T|CnD|-C|3R.C

We set VR.C .= -dR.-~Cand L = —T.
Step towards expresssive DLs underpinning OWL standard.

Some concept inclusions:

Footballfan C —Cricketfan
FootballClub C Vcompetes_in.FootballLeague

Sometimes we also use inverse roles, R™.
FootballLeague C Ycompetes_in~ .FootballClub

The resulting languages are denoted ££7 and ALCZ,
respectively.

Reasoning

Description logics are interpreted in interpretations
7 =(a%F)

with AT C A%, RT C AT x A%, and &’ € AZ, in the expected
way. We write C” for the inductively defined extension of Cin Z
and use

O=CCD, (0,D)=R(ab), (0,D)E=Aa)

as in first-order logic. Open world semantics!

Reasoning

Description logics are interpreted in interpretations
7 =(a%F)

with AT C A%, RT C AT x A%, and &’ € AZ, in the expected
way. We write C” for the inductively defined extension of Cin Z
and use

O=CCD, (0,D)=R(ab), (0,D)E=Aa)

as in first-order logic. Open world semantics!

Deciding these entailments is
» in PTime for £L;

» ExpTime-complete for L7, ALC, ALCT.

The Separability Problem

Let K = (O,D) and E = (E*, E~) with
» ET+ Cind(D) a set of positive example
» E~ Cind(D) a set of negative examples,

A concept C (sometimes also formula or query C) separates E
under K if it appliesto allae E™ but nottoany ac E—.

The Separability Problem

Let K = (O,D) and E = (E*, E~) with

» E* Cind(D) a set of positive example

» E~ Cind(D) a set of negative examples,
A concept C (sometimes also formula or query C) separates E
under K if it appliesto allac ET butnottoanyac E—.

We aim to determine and investigate a few important
dimensions of separation and the problem of deciding
separability.

We do not yet look into the problem learning C from E in the
sense of finding some good generalisation of E.

Examples
Let 1 = (0, D) where
D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.

Let ET = {Peter, Piotr} and E— = {Kazue}.
Task: Separate E using an ALCZ-concept.

Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),

citizen_of(Kazue, Japan),
EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.

Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.

Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.
Let
O = {dcitizen_of. T C Person}

and o = (O, D). Then Person no longer separates.

Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.
Let
O = {dcitizen_of. T C Person}

and Co = (O, D). Then Person no longer separates. The
concept dcitizen_of.EuropC still separates.

Dimensions of the Separability Problem
Input Knowledge base K, E = (E™, E™).

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

To ensure strong separability in the previous example add:

dcitizen_of.{Japan} C —dcitizen_of.EuropC

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

To ensure strong separability in the previous example add:
dcitizen_of.{Japan} C —dcitizen_of.EuropC

2. Language of the separating formula
EL, ALC, ALCZ, FO, (U)CQs, ...

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

To ensure strong separability in the previous example add:
dcitizen_of.{Japan} C —dcitizen_of.EuropC

2. Language of the separating formula
EL, ALC, ALCZ, FO, (U)CQs, ...

3. Additional signature restrictions on C
For instance: only admit geography terms.

Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

To ensure strong separability in the previous example add:
dcitizen_of.{Japan} C —dcitizen_of.EuropC

2. Language of the separating formula
EL, ALC, ALCZ, FO, (U)CQs, ...

3. Additional signature restrictions on C
For instance: only admit geography terms.

4. Projective vs non-projective separability
Can C use symbols that do not occur in ?

Projective vs non-projective separability
Consider I = (0, D) with

D = {born_in(Peter, France), citizen_of(Peter, France),
born_in(Kazue, Japan), citizen_of(Kazue, Italy)}

Can we weakly separate E = ({Peter}, {Kazue})?

Projective vs non-projective separability
Consider I = (0, D) with

D = {born_in(Peter, France), citizen_of(Peter, France),
born_in(Kazue, Japan), citizen_of(Kazue, Italy)}

Can we weakly separate E = ({Peter}, {Kazue})?
The FO-formula

Jy(citizen_of(x, y) A born_in(x, y))

weakly separates, but does not correspond to any
ALCI-concept.

Projective vs non-projective separability
Consider I = (0, D) with

D = {born_in(Peter, France), citizen_of(Peter, France),
born_in(Kazue, Japan), citizen_of(Kazue, Italy)}

Can we weakly separate E = ({Peter}, {Kazue})?
The FO-formula

Jy(citizen_of(x, y) A born_in(x, y))

weakly separates, but does not correspond to any
ALCI-concept.

But still the following ALCZ-concept separates:
Vceitizen_of.EuropC — dborn_in.EuropC

Note that EuropC does not occur in .

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed
from atoms A(y) and R(y1, y2) using 34 and A. We assume one
free variable (answer variable). A union of conjunctive queries
(UCAQ) is a disjunction of CQs.

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed
from atoms A(y) and R(y1, y2) using 34 and A. We assume one
free variable (answer variable). A union of conjunctive queries
(UCAQ) is a disjunction of CQs.

For any UCQ q(x), (O, D) = q(a) is defined as in FO. Has been
iInvestigated extensively over the past 15 by the DL community.

Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed
from atoms A(y) and R(y1, y2) using 34 and A. We assume one

free variable (answer variable). A union of conjunctive queries
(UCAQ) is a disjunction of CQs.

For any UCQ q(x), (O, D) = q(a) is defined as in FO. Has been
iInvestigated extensively over the past 15 by the DL community.

Associate with any D, a a CQ

¥D.a

obtained by replacing individuals by variables and existentially
guantifying over all variables distinct from the variables x
replacing a.

Logically strongest CQ ¢(x) with D = ¢(a).

Example

For

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),
EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr) }

we have

@D,Peter(x) = dJy citizen_of(x, yuk) A citizen_of(¥piotr, YPoland) /\
citizen_of(Vkazue, YJapan) A

EuropC(yuk) A EuropC(yporand) A
Person(x) A Person(ypiotr)-

Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;
» E is UCQ-separable;

Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;
» E is UCQ-separable;

Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

acEk—~r

separates E.

Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

acEk—~r

separates E.
> K I# \/a€E+ @D’a(b) for b S E—.

Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCI-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

ack~
separates E.
> K I# \/a€E+ @D’a(b) for b S E—.

Weak projective separability is polynomial time equivalent to the
complement of rooted UCQ evaluation relative to ALCZ KBs.

The latter problem is coNEXPTIME-complete (Lutz 2008).

Weak Separability: further discussion

» Point 5 implies: Projective ALCZ-separability is
anti-monotone w.r.t. strengthening the ontology: if © C O’
and separability holds for (O’, D), then it holds for (O, D).

» Slightly weaker version of the result holds for ALC.

Weak Separability: further discussion

» Point 5 implies: Projective ALCZ-separability is
anti-monotone w.r.t. strengthening the ontology: if © C O’
and separability holds for (O’, D), then it holds for (O, D).

» Slightly weaker version of the result holds for ALC.

» Non-projective ALCI-separability: harder to analyse as it
is very “syntax dependent”. Still NExpTime-complete.

Strong Separability for ALCZ

For strong separability, additional symbols do not make a
difference. So we do not distinguish between projective and
non-projective strong separability.

Strong Separability for ALCZ

For strong separability, additional symbols do not make a
difference. So we do not distinguish between projective and
non-projective strong separability.

Assume K = (0, D), E = (E™, E™), with O an ALCZ- ontology.
Then the following conditions are equivalent:

» FE is strongly ALCZ-separable;

» E is strongly FO-separable;

» E is strongly UCQ-separable;

» the UCQ \/ g+ ¢p,a Strongly separates E;

Strong Separability for ALCZ

For strong separability, additional symbols do not make a
difference. So we do not distinguish between projective and
non-projective strong separability.

Assume K = (0, D), E = (E™, E™), with O an ALCZ- ontology.
Then the following conditions are equivalent:

» FE is strongly ALCZ-separable;

» E is strongly FO-separable;

» E is strongly UCQ-separable;

» the UCQ \/ g+ ¢p,a Strongly separates E;

» forallac ET and b e E—, the KB

(O, Da—pD)
IS unsatisfiable.

D,_pD obtained from D by adding a copy of D and then
identifying a and b'.

Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For X = (O, D) an ALCZ-KB, the following conditions
are equivalent:

» FE is strongly ALCZ-separable;

Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For X = (O, D) an ALCZ-KB, the following conditions
are equivalent:
» FE is strongly ALCZ-separable;

» Forallae E™ and b € E—, there do not exist models Z
and J of K such that a* and b” realize the same O-type;

Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For X = (O, D) an ALCZ-KB, the following conditions
are equivalent:
» FE is strongly ALCZ-separable;

» Forallae E™ and b € E—, there do not exist models Z
and J of K such that a* and b” realize the same O-type;

» The ALCZI-concept ty LI--- LI, strongly separates E,
t1,...,th the O-types realizable in some IC,a, a€ E~.

Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For X = (O, D) an ALCZ-KB, the following conditions
are equivalent:
» FE is strongly ALCZ-separable;

» Forallae E™ and b € E—, there do not exist models Z
and J of K such that a* and b” realize the same O-type;

» The ALCZI-concept ty LI--- LI, strongly separates E,
t1,...,th the O-types realizable in some IC,a, a€ E~.

Strong separability is ExpTime-complete

Strong Separability: further discussion

» A variation of the above works for ALC.

Strong Separability: further discussion
» A variation of the above works for ALC.

» Strong ALCZ-separability is coNP-complete in data
complexity.

Impact of Signature Restrictions
None of the equivalences regarding separating power holds.
For instance,

» as none of the symbols in D is necessarily in %,
V 2+ ©D.a does not work;

» anti-monotonicity does not hold as new axioms might
iIntroduce new conept names used in separatinf signature.

Impact of Signature Restrictions
None of the equivalences regarding separating power holds.
For instance,

» as none of the symbols in D is necessarily in %,
V 2+ ©D.a does not work;

» anti-monotonicity does not hold as new axioms might
iIntroduce new conept names used in separatinf signature.
without X with X
weak projective ALCZ | NExpTime-c | 2ExpTime-c
strong ALCZ ExpTime-c | 2ExpTime-c

Impact of Signature Restrictions
None of the equivalences regarding separating power holds.
For instance,

» as none of the symbols in D is necessarily in %,
V 2+ ©D.a does not work;

» anti-monotonicity does not hold as new axioms might
iIntroduce new conept names used in separatinf signature.

without X with X
weak projective ALCZ | NExpTime-c | 2ExpTime-c
strong ALCZ ExpTime-c | 2ExpTime-c

without X with X

projective weak | rooted UCQ answering | conservative extensions

strong satisfiability Interpolant existence

Weak Separability and Conservative Extensions

O U O"®W is a conservative extension of O if
ouo"™ECcCcDh = OECCD

for sig(C C D) C sig(O).

Weak Separability and Conservative Extensions

O U O"®W is a conservative extension of O if
ouo"™ECcCcDh = OECCD

for sig(C C D) C sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in ALCZ
Is 2Exp Time-complete.

Weak Separability and Conservative Extensions

O U O"®W is a conservative extension of O if
ouo"™ECcCcDh = OECCD

for sig(C C D) C sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in ALCZ
Is 2Exp Time-complete.

Reduction of conservative extensions to weak separability:

C C D is witness for non-conservativity

< —CU D separates E = ({a}, {b}) under K = (O*, D) and
Y = sig(O) for

> D ={A(a),B(b)}.
> OF = (0O UO")A Y OB, with OC relativization of O to C.

Weak Separability and Conservative Extensions

O U O"®W is a conservative extension of O if
ouo"™ECcCcDh = OECCD

for sig(C C D) C sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in ALCZ
Is 2Exp Time-complete.

Reduction of conservative extensions to weak separability:

C C D is witness for non-conservativity
< —CU D separates E = ({a}, {b}) under K = (O*, D) and
Y = sig(O) for

> D ={A(a),B(b)}.
> OF = (0O UO")A Y OB, with OC relativization of O to C.

Converse not obvious but proofs via emptiness for tree
automata similar.

Strong Separability and Interpolant Existence

Assume ALCZOY (nominals and the universal role u.)
A concept / is a Craig interpolant for C C D if

sig(/) C sig(C)nsig(D), ECCI, EICD

Strong Separability and Interpolant Existence

Assume ALCZOY (nominals and the universal role u.)
A concept / is a Craig interpolant for C C D if

sig(/) C sig(C)nsig(D), ECCI, EICD

DLs with nominals do not have Craig interpolation, so the
existence of / does not follow from = C C D.

Strong Separability and Interpolant Existence

Assume ALCZOY (nominals and the universal role u.)
A concept / is a Craig interpolant for C C D if

sig(/) C sig(C)nsig(D), ECCI, EICD

DLs with nominals do not have Craig interpolation, so the

existence of / does not follow from = C C D.
Theorem [Artale et al 22] Interpolant existence is 2ExpTime

complete for ALCOY and ALCTOV.

Strong Separability and Interpolant Existence

Assume ALCZOY (nominals and the universal role u.)
A concept / is a Craig interpolant for C C D if

sig(/) C sig(C)nsig(D), ECCI, EICD

DLs with nominals do not have Craig interpolation, so the
existence of / does not follow from = C C D.

Theorem [Artale et al 22] Interpolant existence is 2ExpTime
complete for ALCOY and ALCTOV.

Encode K, aand K, b in ALCZO"-concepts Cs 5 and Cs
sharing only ¥ such that

| strongly > -separates {a} from {b} in
< K EIl(a)and K = —I(b)
& ECrgCland = CZ,b |
& lis Craig interpolant for Cs ; C —Cs p

Literature

>

>

Jung, Lutz, Pulcini, Wolter: Logical separability of labeled data
examples under ontologies. KR 2020 and AlJ 2022.

Funk, Jung, Lutz, Pulcini, Wolter: Learning Description Logic
Concepts: When can Positive and Negative Examples be
Separated? |[JCAI 2019

Jung, Lutz, Pulcini, Wolter: Separating Positive and Negative
Data Examples by Concepts and Formulas: The Case of
Restricted Signatures. KR 2021

Artale, Jung, Mazzullo, Ozaki, Wolter: Living Without Beth and
Craig: Explicit Definitions and Interpolants in Description Logics
with Nominals. AAAI 2021 and TOCL 2023.

Separability in Horn
DLs

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

Introduction

Horn Description Logics are an important family of DLs in practice:
= many real-world ontologies are (almost) Horn

Defining feature: Horn DLs are preserved under taking products

Basic members:

- 8L C=T|A|CnC|3dr.C
dsupport . FootballClub, Club M dcompetes_in . League
- LS C.=T|A|CnC|3R.C forarole name or an inverse role R
dlivesin . NorthAmerica M dchild™ . Rich

weak separability (strong separability meaningless without negation/L)
projective=non-projective

signature restrictions have no influence

Concepts < Databases

C=AnNBnmM D=An
Examples dr.(ds.Ands.B)N Jr.3s. T M
dr.(Andr.B) dr. A

A B B
Application query answering Z F C(a) = Simulation (D, a,) < (9, a)

Simulation (), a) < (9, a’) is arelation § C ind(Z) X ind(2’) with aSa’ and
= bSh'and B(b) € Y implies B(b') €€ D’
= bSb’and r(b,c) € D implies c¢Sc'and r(b’,c’) € &’ for some ¢’

Simulation & Homomorphism if & is tree-shaped

Direct Product

Direct Product 7 = % | X ./, of interpretations .¥ |, .%, is defined by

A7 = A7 x A2

A7 = {(d,,d,) | d; € A ifuri = 1,2}

r = {((d;,dy), (e},) | (d,e) € rPifuri =12}

Examples a4 X @
A, B A,, B
A ¢ X 1.97"
r/ \r
b/A\C 4.8
B C

Direct product of databases defined accordingly

4

(ala.aZ)

B

Al(a,l)

I, r

(&DB (c,1)

Properties of the Direct Product

For < and &£ .7 -concepts C and databases &, Y’ we have:

DXD'ECla,a) © DEC@ and D'E Cla’)

Product of any interpretation with &%-concept results in &£ -concept

Not true for 8L .7:

a X 1 _ a,1)
b ‘/\c 2 (b.1) (c,1)
3 (a.3)

Product of n interpretations/databases with 2 domain elements has size 2!

Product Algorithm for & <

[Baader et al, 90ies, ZarrieB8 & Turhan 2013, Barcelo & Romero 2017]

Characterization Let E* = {(9,q)),...,(9D,,a,)}, E~ be sets of examples. TFAE:

1. there is an &% -concept separating E* and E~
2. ILY,(y,...,a,)) L (D,b)forall (D,b) € E~ (product simulation test)

In case that all 9, ,,are* &£ -concepts, we can compute the separating concept:

1. compute product D* := P X ... X D,
2. if P* passes product simulation test for each (<, b) € E~, return 2* (as a concept)
3. otherwise return ,no separating concept®

Remarks

- if 9, are not &£ -concepts, we can still extract separating concept

- exponential time algorithm (product simulation test is NP-complete)

- characterization (with appropriate simulation) works for &%, but PSpace...ExpTime
(however, product algorithm does not work!) [J, Lutz, Wolter 2019]

Extension 1: & £ -ontologies

Answering &< -concept queries C(a) under &< -ontologies O:

0,2 E Cla) ifae C” for all models .¥ of ©® and @

& Z-universal model
Given 0,), we can compute in polytime model .7, o, of O, such that
0,2 F C(a) iff I 4 F C(a) for all &Z-concepts C

Chase-Like procedure:
For O ={AC3ds.BLBEdr.C,CEA}and &Y = {A(a)} we get:

Extension 1: & £ -ontologies

& Z-universal model
Given O, J, we can compute in polytime model ., g, of O, J such that

0,2 F C(a) iff F5 4 F C(a) for all &ZL-concepts C

Reduction of separability with ontologies to separability without ontologies

C separates E* = {(9,4a,),...,(D,,a,)} and E~ = {(&,ay), ..., (&, a;)} under O
i f
C separates {(F5 5, 1), -, (J5g.a4,)} and {(Fp 2, a1), ... (Fp5,4)}

= we can reuse product algorithm for &<

However
- complexity increases to ExpTime-complete [Funk 2019]
- size of smallest separating concept increases from poly to double exponential

Extension 2: &£ .7 -ontologies

& Z-universal model
Given O, J, we can compute in polytime model ., g, of O, J such that

0,2 F C(a) iff F5 4 F C(a) for all &ZL-concepts C

&< .7 -universal model
For every 0, <, we can there is a model .7 5, of O, D such that

0,2 F C(a) iff F5 4 F C(a) for all L F-concepts C

& <L .7 -universal model is infinite (and there is no finite one),
but regular and a representation can be computed in exponential time

Bad News regularity cannot be exploited: [Funk, J, Lutz, Pulcini, Wolter [JCAI 2019]
separability in &£ .7 is undecidable, even for 2 positive + 1 negative example

(Notorious) open problem What about DL-Lite ontologies + &£ .¥-concept sep.?

Extension 3: Conjunctive Queries

We could also be interested in separability by conjunctive queries (CQs)
CQs generalize £ /&< .7 -concepts
Duality Conjunctive queries < interpretations/databases
Answering conjunctive queries g(x) under &< -ontologies O:
O, Fqg(a) Iif (F,»X) = (F, a) for all models .# of O and D

CQ-universal model for & £ -ontologies [Lutz, Toman, Wolter IJCAI 2009]
Given 0, J, there is model S g of 0, D such that

0,D F q(a) iff I5 4 F q(a) for all CQs g(x)
J 5 o is generally infinite, but
finite representation can be computed in polynomial time

10

Extension 3: Conjunctive Queries

[Gutierrez-Basulto, J, Sabellek [JCAI 2018]
Characterization Let E™ = {(9,qa,), ...,(D,,a,)}, E™ be sets of examples and

O an & Z-ontology. The following are equivalent:
1. thereisan CQE* and E~

2. 176 5,(ay,....a,) » (Jp.o b) for all (2, b) € E~ (product homomorphism test)

Product homomorphism test is very similar to CQ separability without ontologies,
which is coNExpTime-complete [Willard 2010, ten Cate & Dalmau 2015]

Product homomorphism test is decidable in coNExpTime exploiting the regularity
[Gutierrez-Basulto, J, Sabellek [JCAI 2018]
Remarks
- separating CQs can be extracted, but double exponentially large
(only exponential without ontologies)
- characterization (with appropriate universal model) works for € <. 7,
but CQ-separability under & <. -ontologies also undecidable

11

