
Quick Introduction to Description Logic
In Description Logic (DL), we distinguish between
▶ conceptual or terminological knowledge, stored in an

ontology O (often also called TBox T ); and
▶ data, stored in a data instance D (often also called an

ABox A).

A pair K = (O,D) is a knowledge base (KB)

.

D is a finite set of assertions of the form A(b), R(a,b) with
▶ A a concept name (unary relation);
▶ R a role name (binary relation);
▶ and a,b individual names.

O is a finite set of concept inclusions (CIs) of the form C ⊑ D
with C,D concepts from a DL L.
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Description Logic EL
EL-concepts are constructed according to

C,D := A | ⊤ | C ⊓ D | ∃R.C

Typically used for large ontologies (for instance SNOMED CT).

Some concept inclusions:

∃support.FootballClub ⊑ Footballfan
FootballClub ⊑ Club ⊓ ∃competes in.FootballLeague

Data instance:

FootballClub(LiverpoolFC),

competes in(LiverpoolFC,PremierLeague),
FootballLeague(PremierLeague)
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Description Logic ALC
ALC-concepts are constructed according to

C,D := A | ⊤ | C ⊓ D | ¬C | ∃R.C

We set ∀R.C := ¬∃R.¬C and ⊥ = ¬⊤.

Step towards expresssive DLs underpinning OWL standard.

Some concept inclusions:

Footballfan ⊑ ¬Cricketfan
FootballClub ⊑ ∀competes in.FootballLeague

Sometimes we also use inverse roles, R−.

FootballLeague ⊑ ∀competes in−.FootballClub

The resulting languages are denoted ELI and ALCI,
respectively.
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Reasoning
Description logics are interpreted in interpretations

I = (∆I , ·I)

with AI ⊆ ∆I , RI ⊆ ∆I ×∆I , and aI ∈ ∆I , in the expected
way. We write CI for the inductively defined extension of C in I
and use

O |= C ⊑ D, (O,D) |= R(a,b), (O,D) |= A(a)

as in first-order logic. Open world semantics!

Deciding these entailments is
▶ in PTime for EL;
▶ ExpTime-complete for ELI, ALC, ALCI.
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The Separability Problem
Let K = (O,D) and E = (E+,E−) with
▶ E+ ⊆ ind(D) a set of positive example
▶ E− ⊆ ind(D) a set of negative examples,

A concept C (sometimes also formula or query C) separates E
under K if it applies to all a ∈ E+ but not to any a ∈ E−.

We aim to determine and investigate a few important
dimensions of separation and the problem of deciding
separability.

We do not yet look into the problem learning C from E in the
sense of finding some good generalisation of E .
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Examples
Let K1 = (∅,D) where

D = {citizen of(Peter,UK), citizen of(Piotr,Poland),
citizen of(Kazue, Japan),
EuropC(UK),EuropC(Poland),
Person(Peter),Person(Piotr)}.

Let E+ = {Peter,Piotr} and E− = {Kazue}.

Task: Separate E using an ALCI-concept.

Person separates E since

K1 |= Person(Peter) K1 |= Person(Piotr) K1 ̸|= Person(Kazue)

Not intended as only due to incompleteness.
Let

O = {∃citizen of.⊤ ⊑ Person}
and K2 = (O,D). Then Person no longer separates. The
concept ∃citizen of.EuropC still separates.
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Dimensions of the Separability Problem
Input Knowledge base K, E = (E+,E−).

Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K |= C(a), for all a ∈ E+

weak: K ̸|= C(a), for all a ∈ E−

strong: K |= ¬C(a), for all a ∈ E−

To ensure strong separability in the previous example add:

∃citizen of.{Japan} ⊑ ¬∃citizen of.EuropC

2. Language of the separating formula
EL, ALC, ALCI, FO, (U)CQs, . . .

3. Additional signature restrictions on C
For instance: only admit geography terms.

4. Projective vs non-projective separability
Can C use symbols that do not occur in K?
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Projective vs non-projective separability
Consider K = (∅,D) with

D = {born in(Peter,France), citizen of(Peter,France),
born in(Kazue, Japan), citizen of(Kazue, Italy)}

Can we weakly separate E = ({Peter}, {Kazue})?

The FO-formula

∃y(citizen of(x , y) ∧ born in(x , y))

weakly separates, but does not correspond to any
ALCI-concept.

But still the following ALCI-concept separates:

∀citizen of.EuropC → ∃born in.EuropC

Note that EuropC does not occur in K.
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Intermezzo: Conjunctive Queries
A conjunctive query (CQ) q(x) is an FO-formula constructed
from atoms A(y) and R(y1, y2) using ∃ and ∧. We assume one
free variable (answer variable). A union of conjunctive queries
(UCQ) is a disjunction of CQs.

For any UCQ q(x), (O,D) |= q(a) is defined as in FO. Has been
investigated extensively over the past 15 by the DL community.

Associate with any D,a a CQ

φD,a

obtained by replacing individuals by variables and existentially
quantifying over all variables distinct from the variables x
replacing a.

Logically strongest CQ φ(x) with D |= φ(a).
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Example
For

D = {citizen of(Peter,UK), citizen of(Piotr,Poland),
citizen of(Kazue, Japan),
EuropC(UK),EuropC(Poland),
Person(Peter),Person(Piotr)}

we have

φD,Peter(x) = ∃y⃗ citizen of(x , yUK) ∧ citizen of(yPiotr, yPoland) ∧
citizen of(yKazue, yJapan) ∧
EuropC(yUK) ∧ EuropC(yPoland) ∧
Person(x) ∧ Person(yPiotr).



Weak Separability for ALCI
Assume K = (O,D) with O in ALCI and E = (E+,E−) are
given.
Then the following conditions are equivalent:
▶ E is projectively ALCI-separable;
▶ E is FO-separable;
▶ E is UCQ-separable;

▶ the UCQ ∨

a∈E+

φD,a

separates E .
▶ K ̸|= ∨

a∈E+ φD,a(b) for b ∈ E−.

Weak projective separability is polynomial time equivalent to the
complement of rooted UCQ evaluation relative to ALCI KBs.

The latter problem is coNEXPTIME-complete (Lutz 2008).
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Weak Separability: further discussion
▶ Point 5 implies: Projective ALCI-separability is

anti-monotone w.r.t. strengthening the ontology: if O ⊆ O′

and separability holds for (O′,D), then it holds for (O,D).
▶ Slightly weaker version of the result holds for ALC.

▶ Non-projective ALCI-separability: harder to analyse as it
is very “syntax dependent”. Still NExpTime-complete.
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Strong Separability for ALCI
For strong separability, additional symbols do not make a
difference. So we do not distinguish between projective and
non-projective strong separability.

Assume K = (O,D), E = (E+,E−), with O an ALCI- ontology.
Then the following conditions are equivalent:
▶ E is strongly ALCI-separable;
▶ E is strongly FO-separable;
▶ E is strongly UCQ-separable;
▶ the UCQ

∨
a∈E+ φD,a strongly separates E ;

▶ for all a ∈ E+ and b ∈ E−, the KB

(O,Da=bD)

is unsatisfiable.

Da=bD obtained from D by adding a copy of D and then
identifying a and b′.
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Strong Separability for ALCI
An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For K = (O,D) an ALCI-KB, the following conditions
are equivalent:
▶ E is strongly ALCI-separable;
▶ For all a ∈ E+ and b ∈ E−, there do not exist models I

and J of K such that aI and bJ realize the same O-type;
▶ The ALCI-concept t1 ⊔ · · · ⊔ tn strongly separates E ,

t1, . . . , tn the O-types realizable in some K,a, a ∈ E−.

Strong separability is ExpTime-complete
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Strong Separability: further discussion
▶ A variation of the above works for ALC.

▶ Strong ALCI-separability is coNP-complete in data
complexity.
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Impact of Signature Restrictions
None of the equivalences regarding separating power holds.
For instance,
▶ as none of the symbols in D is necessarily in Σ,∨

a∈E+ φD,a does not work;
▶ anti-monotonicity does not hold as new axioms might

introduce new conept names used in separatinf signature.

without Σ with Σ

weak projective ALCI NExpTime-c 2ExpTime-c
strong ALCI ExpTime-c 2ExpTime-c

without Σ with Σ

projective weak rooted UCQ answering conservative extensions
strong satisfiability interpolant existence
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Weak Separability and Conservative Extensions
O ∪Onew is a conservative extension of O if

O ∪Onew |= C ⊑ D ⇒ O |= C ⊑ D

for sig(C ⊑ D) ⊆ sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in ALCI
is 2ExpTime-complete.

Reduction of conservative extensions to weak separability:

C ⊑ D is witness for non-conservativity
⇔ ¬C ⊔ D separates E = ({a}, {b}) under K = (O∗,D) and
Σ = sig(O) for
▶ D = {A(a),B(b)}.
▶ O∗ = (O ∪Onew)A ∪ OB, with OC relativization of O to C.

Converse not obvious but proofs via emptiness for tree
automata similar.
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Strong Separability and Interpolant Existence
Assume ALCIOu (nominals and the universal role u.)
A concept I is a Craig interpolant for C ⊑ D if

sig(I) ⊆ sig(C) ∩ sig(D), |= C ⊑ I, |= I ⊑ D

DLs with nominals do not have Craig interpolation, so the
existence of I does not follow from |= C ⊑ D.
Theorem [Artale et al 22] Interpolant existence is 2ExpTime
complete for ALCOu and ALCIOu.
Encode K,a and K,b in ALCIOu-concepts CΣ,a and CΣ,b
sharing only Σ such that

I strongly Σ-separates {a} from {b} in K
⇔ K |= I(a) and K |= ¬I(b)
⇔ |= CΣ,a ⊑ I and |= CΣ,b ⊑ ¬I
⇔ I is Craig interpolant for CΣ,a ⊑ ¬CΣ,b
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Introduction
Horn Description Logics are an important family of DLs in practice:


 many real-world ontologies are (almost) Horn


Defining feature: Horn DLs are preserved under taking products 

Basic members:

-             





-          for a role name or an inverse role 





weak separability  (strong separability meaningless without negation/ ) 

projective=non-projective       


signature restrictions have no influence

⇒

ℰℒ C := ⊤ ∣ A ∣ C ⊓ C ∣ ∃r . C

∃support . FootballClub, Club ⊓ ∃competes_in . League

ℰℒℐ C := ⊤ ∣ A ∣ C ⊓ C ∣ ∃R . C R

∃ livesIn . NorthAmerica ⊓ ∃child− . Rich

⊥
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Concepts  Databases⇔
Examples                           

C = A ⊓ B ⊓
∃r . (∃s . A ⊓ ∃s . B) ⊓
∃r . (A ⊓ ∃r . B)

D = A ⊓
∃r . ∃s . ⊤ ⊓
∃r . A

Application      query answering       =     Simulation 


Simulation  is a relation  with  and

-        implies      

-     implies       for some 


Simulation  Homomorphism if  is tree-shaped

𝒟 ⊧ C(a) (𝒟C, aC) ⪯ (𝒟, a)

(𝒟, a) ⪯ (𝒟′￼, a′￼) S ⊆ ind(𝒟) × ind(𝒟′￼) aSa′￼

bSb′￼ and B(b) ∈ 𝒟 B(b′￼) ∈ 𝒟′￼

bSb′￼ and r(b, c) ∈ 𝒟 cSc′￼ and r(b′￼, c′￼) ∈ 𝒟′￼ c′￼

≈ 𝒟
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Direct Product
Direct Product  of interpretations  is defined by
𝒥 = ℐ1 × ℐ2 ℐ1, ℐ2

Δ𝒥 = Δℐ1 × Δℐ2

A𝒥 = {(d1, d2) ∣ di ∈ Aℐi für i = 1,2}
r𝒥 = {((d1, d2), (e1, e2)) ∣ (di, ei) ∈ rℐi für i = 1,2}

a1 (a1, a2)a2
A1, B A2, B B

× =

b
r r

rA
A, B

a

cB C

1× = r r
A (a,1)

(b,1) (c,1)B

Examples

Direct product of databases defined accordingly
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Properties of the Direct Product

For  and -concepts  and databases  we have:


              and    

ℰℒ ℰℒℐ C 𝒟, 𝒟′￼

𝒟 × 𝒟′￼⊧ C(a, a′￼) ⇔ 𝒟 ⊧ C(a) 𝒟′￼⊧ C(a′￼)

Product of any interpretation with -concept results in -concept

Not true for : 


ℰℒ ℰℒ
ℰℒℐ

Product of  interpretations/databases with  domain elements has size !n 2 2n

b

a

c

1× = (a,1)
(b,1) (c,1)2

3 (a,3)
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Product Algorithm for ℰℒ
Characterization  Let  be sets of examples. TFAE:

1. there is an -concept separating  and 

2.  for all                (product simulation test)

E+ = {(𝒟1, a1), …, (𝒟n, an)}, E−
ℰℒ E+ E−

(Πi𝒟i, (a1, …, an)) /⪯ (𝒟, b) (𝒟, b) ∈ E−

In case that all  „are“ -concepts, we can compute the separating concept:  


1. compute product  

2. if  passes product simulation test for each , return  (as a concept) 

3. otherwise return „no separating concept“

𝒟i ℰℒ
𝒟* := 𝒟1 × … × 𝒟n

𝒟* (𝒟, b) ∈ E− 𝒟*

[Baader et al, 90ies, Zarrieß & Turhan 2013, Barcelo & Romero 2017]

Remarks 
- if  are not -concepts, we can still extract separating concept

- exponential time algorithm (product simulation test is NP-complete)

- characterization (with appropriate simulation) works for , but PSpace…ExpTime  

(however, product algorithm does not work!)

𝒟i ℰℒ
ℰℒℐ

[J, Lutz, Wolter 2019]
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Extension 1: -ontologiesℰℒ

-universal model 

Given , we can compute in polytime model  of  such that


 iff  for all -concepts 


Chase-Like procedure: 

For   and  we get: 

ℰℒ
𝒪, 𝒟 ℐ𝒪,𝒟 𝒪, 𝒟

𝒪, 𝒟 ⊧ C(a) ℐ𝒪,𝒟 ⊧ C(a) ℰℒ C

𝒪 = {A ⊑ ∃s . B, B ⊑ ∃r . C, C ⊑ A} 𝒟 = {A(a)}

Answering -concept queries  under -ontologies :


    if  for all models  of  and 


ℰℒ C(a) ℰℒ 𝒪
𝒪, 𝒟 ⊧ C(a) a ∈ Cℐ ℐ 𝒪 𝒟

a A
s
B

A

r

C

s
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Extension 1: -ontologiesℰℒ
-universal model 


Given , we can compute in polytime model  of  such that

 iff  for all -concepts 

ℰℒ
𝒪, 𝒟 ℐ𝒪,𝒟 𝒪, 𝒟

𝒪, 𝒟 ⊧ C(a) ℐ𝒪,𝒟 ⊧ C(a) ℰℒ C

Reduction of separability with ontologies to separability without ontologies


 separates  and  under     

iff


 separates  and 

C E+ = {(𝒟1, a1), …, (𝒟n, an)} E− = {(ℰ1, a1), …, (ℰk, ak)} 𝒪

C {(ℐ𝒪,𝒟1, a1), …, (ℐ𝒪,𝒟n
, an)} {(ℐ𝒪,ℰ1, a1), …, (ℐ𝒪,ℰk

, ak)}

 we can reuse product algorithm for 


However 

- complexity increases to ExpTime-complete 

- size of smallest separating concept increases from poly to double exponential

⇒ ℰℒ

[Funk 2019]
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Extension 2: -ontologiesℰℒℐ

-universal model 

For every , we can there is a model  of  such that


 iff  for all -concepts 


-universal model is infinite (and there is no finite one), 

     but regular and a representation can be computed in exponential time

ℰℒℐ
𝒪, 𝒟 ℐ𝒪,𝒟 𝒪, 𝒟
𝒪, 𝒟 ⊧ C(a) ℐ𝒪,𝒟 ⊧ C(a) ℰℒℐ C

ℰℒℐ

-universal model 

Given , we can compute in polytime model  of  such that


 iff  for all -concepts 

ℰℒ
𝒪, 𝒟 ℐ𝒪,𝒟 𝒪, 𝒟

𝒪, 𝒟 ⊧ C(a) ℐ𝒪,𝒟 ⊧ C(a) ℰℒ C

Bad News  regularity cannot be exploited: 

separability in  is undecidable, even for 2 positive + 1 negative exampleℰℒℐ

[Funk, J, Lutz, Pulcini, Wolter IJCAI 2019]

(Notorious) open problem  What about DL-Lite ontologies + -concept sep.?ℰℒℐ
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Extension 3: Conjunctive Queries
We could also be interested in separability by conjunctive queries (CQs) 

CQs generalize -concepts 

Duality    Conjunctive queries      interpretations/databases


Answering conjunctive queries  under -ontologies :


    if  for all models  of  and 


ℰℒ/ℰℒℐ
⇔
q(x) ℰℒ 𝒪

𝒪, 𝒟 ⊧ q(a) (ℐq, x) → (ℐ, a) ℐ 𝒪 𝒟

CQ-universal model for -ontologies

Given , there is model  of  such that


 iff  for all CQs 

 is generally infinite, but


finite representation can be computed in polynomial time

ℰℒ
𝒪, 𝒟 ℐ𝒪,𝒟 𝒪, 𝒟

𝒪, 𝒟 ⊧ q(a) ℐ𝒪,𝒟 ⊧ q(a) q(x)
ℐ𝒪,𝒟

[Lutz, Toman, Wolter IJCAI 2009]
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Characterization  Let  be sets of examples and

                                an -ontology. The following are equivalent:

1. there is an CQ  and 

2.  for all   (product homomorphism test)

E+ = {(𝒟1, a1), …, (𝒟n, an)}, E−
𝒪 ℰℒ

E+ E−
(Πiℐ𝒪,𝒟i

, (a1, …, an)) ↛ (ℐ𝒪,𝒟, b) (𝒟, b) ∈ E−

[Gutierrez-Basulto, J, Sabellek IJCAI 2018]

Remarks 
- separating CQs can be extracted, but double exponentially large  

(only exponential without ontologies)

- characterization (with appropriate universal model) works for ,  

but CQ-separability under -ontologies also undecidable
ℰℒℐ

ℰℒℐ

Extension 3: Conjunctive Queries

Product homomorphism test is very similar to CQ separability without ontologies,

       which is coNExpTime-complete             [Willard 2010, ten Cate & Dalmau 2015]


Product homomorphism test is decidable in coNExpTime exploiting the regularity

[Gutierrez-Basulto, J, Sabellek IJCAI 2018]


