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In Description Logic (DL), we distinguish between

» conceptual or terminological knowledge, stored in an
ontology O (often also called TBox 7); and

» data, stored in a data instance D (often also called an
ABox A).

A pair K = (O, D) is a knowledge base (KB).

D is a finite set of assertions of the form A(b), R(a, b) with
» A a concept name (unary relation);
» R arole name (binary relation);
» and a, b individual names.

O is a finite set of concept inclusions (Cls) of the form C C D
with C, D concepts from a DL L.
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Description Logic ££

£ L-concepts are constructed according to
C,D-=A|T|CnD|3R.C

Typically used for large ontologies (for instance SNOMED CT).

Some concept inclusions:

Footballfan
Club M dcompetes_in.FootballLeague

dsupport.FootballClub

C
FootballClub LC

Data instance:

FootballClub(LiverpoolFC),
competes_in(LiverpoolFC, PremierLeague),
FootballLeague(PremierLeague)
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Description Logic ALC

ALC-concepts are constructed according to
C,D=A|T|CnD|-C|3R.C

We set VR.C .= -dR.-~Cand L = —T.
Step towards expresssive DLs underpinning OWL standard.

Some concept inclusions:

Footballfan C —Cricketfan
FootballClub C Vcompetes_in.FootballLeague

Sometimes we also use inverse roles, R™.
FootballLeague C Ycompetes_in~ .FootballClub

The resulting languages are denoted ££7 and ALCZ,
respectively.
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7 =(a%F)

with AT C A%, RT C AT x A%, and &’ € AZ, in the expected
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Reasoning

Description logics are interpreted in interpretations
7 =(a%F)

with AT C A%, RT C AT x A%, and &’ € AZ, in the expected
way. We write C” for the inductively defined extension of Cin Z
and use

O=CCD, (0,D)=R(ab), (0,D)E=Aa)

as in first-order logic. Open world semantics!

Deciding these entailments is
» in PTime for £L;

» ExpTime-complete for L7, ALC, ALCT.
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The Separability Problem

Let K = (O,D) and E = (E*, E~) with

» E* Cind(D) a set of positive example

» E~ Cind(D) a set of negative examples,
A concept C (sometimes also formula or query C) separates E
under K if it appliesto allac ET butnottoanyac E—.

We aim to determine and investigate a few important
dimensions of separation and the problem of deciding
separability.

We do not yet look into the problem learning C from E in the
sense of finding some good generalisation of E.



Examples
Let 1 = (0, D) where
D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.

Let ET = {Peter, Piotr} and E— = {Kazue}.
Task: Separate E using an ALCZ-concept.



Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)



Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),

citizen_of(Kazue, Japan),
EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.

Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.



Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.
Let
O = {dcitizen_of. T C Person}

and o = (O, D). Then Person no longer separates.



Examples
Let K1 = (0, D) where

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),

EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr)}.
Let ET = {Peter, Piotr} and E— = {Kazue}.

Task: Separate E using an ALCZ-concept.
Person separates E since

IC1 &= Person(Peter) K1 = Person(Piotr) K4 = Person(Kazue)

Not intended as only due to incompleteness.
Let
O = {dcitizen_of. T C Person}

and Co = (O, D). Then Person no longer separates. The
concept dcitizen_of.EuropC still separates.
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Dimensions of the Separability Problem

Input Knowledge base K, E = (E™, E™).
Question Is there a concept C separating E?

1. Weak vs strong separability
in both cases: K = C(a), forallae E™
weak: K [~ C(a), forallae E~
strong: K = —-C(a), forallae E~

To ensure strong separability in the previous example add:
dcitizen_of.{Japan} C —dcitizen_of.EuropC

2. Language of the separating formula
EL, ALC, ALCZ, FO, (U)CQs, ...

3. Additional signature restrictions on C
For instance: only admit geography terms.

4. Projective vs non-projective separability
Can C use symbols that do not occur in ?
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Projective vs non-projective separability
Consider I = (0, D) with

D = {born_in(Peter, France), citizen_of(Peter, France),
born_in(Kazue, Japan), citizen_of(Kazue, Italy)}

Can we weakly separate E = ({Peter}, {Kazue})?
The FO-formula

Jy(citizen_of(x, y) A born_in(x, y))

weakly separates, but does not correspond to any
ALCI-concept.

But still the following ALCZ-concept separates:
Vceitizen_of.EuropC — dborn_in.EuropC

Note that EuropC does not occur in .
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Intermezzo: Conjunctive Queries

A conjunctive query (CQ) q(x) is an FO-formula constructed
from atoms A(y) and R(y1, y2) using 34 and A. We assume one

free variable (answer variable). A union of conjunctive queries
(UCAQ) is a disjunction of CQs.

For any UCQ q(x), (O, D) = q(a) is defined as in FO. Has been
iInvestigated extensively over the past 15 by the DL community.

Associate with any D, a a CQ

¥D.a

obtained by replacing individuals by variables and existentially
guantifying over all variables distinct from the variables x
replacing a.

Logically strongest CQ ¢(x) with D = ¢(a).



Example

For

D = {citizen_of(Peter, UK), citizen_of(Piotr, Poland),
citizen_of(Kazue, Japan),
EuropC(UK), EuropC(Poland),
Person(Peter), Person(Piotr) }

we have

@D,Peter(x) = dJy citizen_of(x, yuk) A citizen_of(¥piotr, YPoland) /\
citizen_of(Vkazue, YJapan) A

EuropC(yuk) A EuropC(yporand) A
Person(x) A Person(ypiotr)-



Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;
» E is UCQ-separable;



Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;
» E is UCQ-separable;



Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

acEk—~r

separates E.



Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCZ-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

acEk—~r

separates E.
> K I# \/a€E+ @D’a(b) for b S E—.



Weak Separability for ALCT

Assume K = (O, D) with O in ALCT and E = (ET,E™) are
given.
Then the following conditions are equivalent:

» E is projectively ALCI-separable;
» E is FO-separable;

» E is UCQ-separable;

» the UCQ

\/ ¥D,a

ack~
separates E.
> K I# \/a€E+ @D’a(b) for b S E—.

Weak projective separability is polynomial time equivalent to the
complement of rooted UCQ evaluation relative to ALCZ KBs.

The latter problem is coNEXPTIME-complete (Lutz 2008).
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» Point 5 implies: Projective ALCZ-separability is
anti-monotone w.r.t. strengthening the ontology: if © C O’
and separability holds for (O’, D), then it holds for (O, D).

» Slightly weaker version of the result holds for ALC.



Weak Separability: further discussion

» Point 5 implies: Projective ALCZ-separability is
anti-monotone w.r.t. strengthening the ontology: if © C O’
and separability holds for (O’, D), then it holds for (O, D).

» Slightly weaker version of the result holds for ALC.

» Non-projective ALCI-separability: harder to analyse as it
is very “syntax dependent”. Still NExpTime-complete.
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Strong Separability for ALCZ

For strong separability, additional symbols do not make a
difference. So we do not distinguish between projective and
non-projective strong separability.

Assume K = (0, D), E = (E™, E™), with O an ALCZ- ontology.
Then the following conditions are equivalent:

» FE is strongly ALCZ-separable;

» E is strongly FO-separable;

» E is strongly UCQ-separable;

» the UCQ \/ g+ ¢p,a Strongly separates E;

» forallac ET and b e E—, the KB

(O, Da—pD)
IS unsatisfiable.

D,_pD obtained from D by adding a copy of D and then
identifying a and b'.
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Strong Separability for ALCZ

An O-type is a maximal subset of the set of subconcepts of O
that is satisfiable. There are exponentially many O-types.

Theorem For X = (O, D) an ALCZ-KB, the following conditions
are equivalent:
» FE is strongly ALCZ-separable;

» Forallae E™ and b € E—, there do not exist models Z
and J of K such that a* and b” realize the same O-type;

» The ALCZI-concept ty LI--- LI, strongly separates E,
t1,...,th the O-types realizable in some IC,a, a€ E~.

Strong separability is ExpTime-complete
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Strong Separability: further discussion
» A variation of the above works for ALC.

» Strong ALCZ-separability is coNP-complete in data
complexity.
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Impact of Signature Restrictions
None of the equivalences regarding separating power holds.
For instance,

» as none of the symbols in D is necessarily in %,
V 2+ ©D.a does not work;

» anti-monotonicity does not hold as new axioms might
iIntroduce new conept names used in separatinf signature.

without X with X
weak projective ALCZ | NExpTime-c | 2ExpTime-c
strong ALCZ ExpTime-c | 2ExpTime-c

without X with X

projective weak | rooted UCQ answering | conservative extensions

strong satisfiability Interpolant existence
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Weak Separability and Conservative Extensions

O U O"®W is a conservative extension of O if
ouo"™ECcCcDh = OECCD

for sig(C C D) C sig(O).

Theorem [Lutz and W. 2006] Conservative Extensions in ALCZ
Is 2Exp Time-complete.

Reduction of conservative extensions to weak separability:

C C D is witness for non-conservativity
< —CU D separates E = ({a}, {b}) under K = (O*, D) and
Y = sig(O) for

> D ={A(a),B(b)}.
> OF = (0O UO")A Y OB, with OC relativization of O to C.

Converse not obvious but proofs via emptiness for tree
automata similar.
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Strong Separability and Interpolant Existence

Assume ALCZOY (nominals and the universal role u.)
A concept / is a Craig interpolant for C C D if

sig(/) C sig(C)nsig(D), ECCI, EICD

DLs with nominals do not have Craig interpolation, so the
existence of / does not follow from = C C D.

Theorem [Artale et al 22] Interpolant existence is 2ExpTime
complete for ALCOY and ALCTOV.

Encode K, aand K, b in ALCZO"-concepts Cs 5 and Cs
sharing only ¥ such that

| strongly > -separates {a} from {b} in
< K EIl(a)and K = —I(b)
& ECrgCland = CZ,b |
& lis Craig interpolant for Cs ; C —Cs p
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Separability in Horn
DLs

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03



Introduction

Horn Description Logics are an important family of DLs in practice:
= many real-world ontologies are (almost) Horn

Defining feature: Horn DLs are preserved under taking products

Basic members:

- 8L C=T|A|CnC|3dr.C
dsupport . FootballClub, Club M dcompetes_in . League
- LS C.=T|A|CnC|3R.C forarole name or an inverse role R
dlivesin . NorthAmerica M dchild™ . Rich

weak separability (strong separability meaningless without negation/L)
projective=non-projective

signature restrictions have no influence



Concepts < Databases

C=AnNBnmM D=An
Examples dr.(ds.Ands.B)N Jr.3s. T M
dr.(Andr.B) dr. A

A B B
Application  query answering Z F C(a) = Simulation (D, a,) < (9, a)

Simulation (), a) < (9, a’) is arelation § C ind(Z) X ind(2’) with aSa’ and
= bSh'and B(b) € Y  implies B(b') €€ D’
= bSb’and r(b,c) € D implies c¢Sc'and r(b’,c’) € &’ for some ¢’

Simulation & Homomorphism if & is tree-shaped



Direct Product

Direct Product 7 = % | X ./, of interpretations .¥ |, .%, is defined by

A7 = A7 x A2

A7 = {(d,,d,) | d; € A ifuri = 1,2}

r = {((d;,dy), (e}, ) | (d,e) € rPifuri =12}

Examples a4 X @
A, B A,, B
A ¢ X 1.97"
r/ \r
b/A\C 4.8
B C

Direct product of databases defined accordingly

4

(ala.aZ)

B

Al(a,l)

I, r

(&DB (c,1)



Properties of the Direct Product

For < and &£ .7 -concepts C and databases &, Y’ we have:

DXD'ECla,a) © DEC@ and D'E Cla’)

Product of any interpretation with &%-concept results in &£ -concept

Not true for 8L .7:

a X 1 _ a,1)
b ‘/\c 2 (b.1) (c,1)
3 (a.3)

Product of n interpretations/databases with 2 domain elements has size 2!



Product Algorithm for & <

[Baader et al, 90ies, ZarrieB8 & Turhan 2013, Barcelo & Romero 2017]

Characterization Let E* = {(9,q)),...,(9D,,a,)}, E~ be sets of examples. TFAE:

1. there is an &% -concept separating E* and E~
2. ILY,(y,...,a,)) L (D,b)forall (D,b) € E~ (product simulation test)

In case that all 9, ,,are* &£ -concepts, we can compute the separating concept:

1. compute product D* := P X ... X D,
2. if P* passes product simulation test for each (<, b) € E~, return 2* (as a concept)
3. otherwise return ,no separating concept®

Remarks

- if 9, are not &£ -concepts, we can still extract separating concept

- exponential time algorithm (product simulation test is NP-complete)

- characterization (with appropriate simulation) works for &%, but PSpace...ExpTime
(however, product algorithm does not work!) [J, Lutz, Wolter 2019]



Extension 1: & £ -ontologies

Answering &< -concept queries C(a) under &< -ontologies O:

0,2 E Cla) ifae C” for all models .¥ of ©® and @

& Z-universal model
Given 0, ), we can compute in polytime model .7, o, of O, such that
0,2 F C(a) iff I 4 F C(a) for all &Z-concepts C

Chase-Like procedure:
For O ={AC3ds.BLBEdr.C,CEA}and &Y = {A(a)} we get:



Extension 1: & £ -ontologies

& Z-universal model
Given O, J, we can compute in polytime model ., g, of O, J such that

0,2 F C(a) iff F5 4 F C(a) for all &ZL-concepts C

Reduction of separability with ontologies to separability without ontologies

C separates E* = {(9,4a,),...,(D,,a,)} and E~ = {(&,ay), ..., (&, a;)} under O
i f
C separates {(F5 5, 1), -, (J5g.a4,)} and {(Fp 2, a1), ... (Fp5,4)}

= we can reuse product algorithm for &<

However
- complexity increases to ExpTime-complete [Funk 2019]
- size of smallest separating concept increases from poly to double exponential



Extension 2: &£ .7 -ontologies

& Z-universal model
Given O, J, we can compute in polytime model ., g, of O, J such that

0,2 F C(a) iff F5 4 F C(a) for all &ZL-concepts C

&< .7 -universal model
For every 0, <, we can there is a model .7 5, of O, D such that

0,2 F C(a) iff F5 4 F C(a) for all L F-concepts C

& <L .7 -universal model is infinite (and there is no finite one),
but regular and a representation can be computed in exponential time

Bad News regularity cannot be exploited:  [Funk, J, Lutz, Pulcini, Wolter [JCAI 2019]
separability in &£ .7 is undecidable, even for 2 positive + 1 negative example

(Notorious) open problem What about DL-Lite ontologies + &£ .¥-concept sep.?



Extension 3: Conjunctive Queries

We could also be interested in separability by conjunctive queries (CQs)
CQs generalize £ /&< .7 -concepts
Duality Conjunctive queries < interpretations/databases
Answering conjunctive queries g(x) under &< -ontologies O:
O, Fqg(a) Iif (F,»X) = (F, a) for all models .# of O and D

CQ-universal model for & £ -ontologies [Lutz, Toman, Wolter IJCAI 2009]
Given 0, J, there is model S g of 0, D such that

0,D F q(a) iff I5 4 F q(a) for all CQs g(x)
J 5 o is generally infinite, but
finite representation can be computed in polynomial time
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Extension 3: Conjunctive Queries

[Gutierrez-Basulto, J, Sabellek [JCAI 2018]
Characterization Let E™ = {(9,qa,), ...,(D,,a,)}, E™ be sets of examples and

O an & Z-ontology. The following are equivalent:
1. thereisan CQE* and E~

2. 176 5,(ay,....a,) » (Jp.o b) for all (2, b) € E~ (product homomorphism test)

Product homomorphism test is very similar to CQ separability without ontologies,
which is coNExpTime-complete [Willard 2010, ten Cate & Dalmau 2015]

Product homomorphism test is decidable in coNExpTime exploiting the regularity
[Gutierrez-Basulto, J, Sabellek [JCAI 2018]
Remarks
- separating CQs can be extracted, but double exponentially large
(only exponential without ontologies)
- characterization (with appropriate universal model) works for € <. 7,
but CQ-separability under & <. -ontologies also undecidable
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