

# Concept Learning in Description Logics

#### **Neurosymbolic Concept Learning**

Axel Ngonga



August 14, 2023





## Section 1

## Motivation



#### Introduction Data Web



**Domains with Triples URLs with Triples** embedded-jsonld : 8,596,990 embedded-jsonld : 877,812,654 icrodata : 7,471,628 nicrodata : 801,909,298 mf-hcard : 3.880.98 -mf-hcard : 318.625.913 rdfa : 594.018 rdfa : 91,100,238 -mf-xfn - 349 876 mf-hcalendar : 20.810 mf-hcalendar : 1.319.116 -mf-hreview : 17.303 -mf-hreview : 1.279.142 others : 219,488 2,500,000 5 000 000 7 500 000 10 000 000 1 000 000 000 250 000 000 750.000.000

- RDF knowledge bases are now first-class citizens of the Web
- Approx. 50% of websites contain RDF<sup>1</sup>
- 2+ billion URLs contain RDF statements
- Ca. 100 billion statements in Linked Open Data

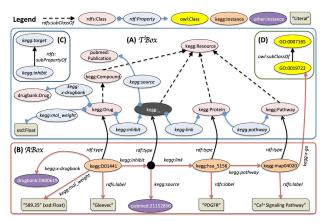
<sup>1</sup>See http://webdatacommons.org/structureddata/#results-2022-1



## Introduction



#### **Description Logics**

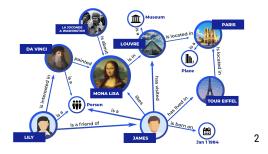


- Terminology of RDF datasets in description logics
- Popular DLs include *ELH* (e.g., for biomedical domain), *ALC* (e.g., for ML-driven applications), and *SROIQ* (e.g., on the Web)





Example

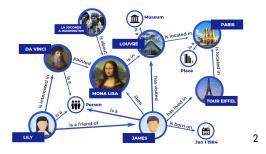


▶  $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$ 





Example

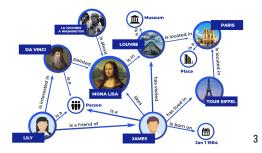


- ▶  $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$
- Neural solution:  $\mathbf{e}(\mathbf{v}_i) = \varphi\left(\bigoplus_{\mathbf{v}_j \in \mathcal{N}_i} \mathbf{e}(\mathbf{v}_j), \mathbf{e}(\mathbf{v}_i)\right)$
- ► Pro: Time-efficient
- Contra: Unintelligible, does not exploits background knowledge <sup>2</sup>Source: https://bit.ly/3sxCj6e





Example



•  $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$ 





Example



- $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$
- ► Solution in ALCO:  $H = \{\exists isLocatedIn.\{Paris\}\}$

<sup>3</sup>Source: https://bit.ly/3sxCj6e





Example



- $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$
- Solution in  $ALCO: H = \{\exists isLocatedIn. \{Paris\}\}$
- Pro: explainable, exploits background knowledge
- ► Contra: slow :-(

<sup>&</sup>lt;sup>3</sup>Source: https://bit.ly/3sxCj6e





Goal

#### Goal

- Attempt neuro-symbolic learning on knowledge graphs
- ► Exploit time efficiency of neural approaches
- ► Keep explainability of symbolic approaches







## Section 2

## **Class Expression Learning**





#### Formal definition

- Supervised learning with background knowledge (adapted from [?])
- ► Given:
  - Formal logic  $\mathcal{L}$ , e.g.  $\mathcal{ALC}$
  - ▶ Background knowledge in form of knowledge base  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
  - Set of positive examples  $E^+ \subseteq N_I$
  - Set of negative examples  $E^- \subseteq N_I$





#### Formal definition

- Supervised learning with background knowledge (adapted from [?])
- ► Given:
  - Formal logic  $\mathcal{L}$ , e.g.  $\mathcal{ALC}$
  - ▶ Background knowledge in form of knowledge base  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
  - Set of positive examples  $E^+ \subseteq N_I$
  - Set of negative examples  $E^- \subseteq N_I$
- Goal: Find at least one hypothesis  $H \in \mathcal{H}$  with
  - 1. *H* is a class expression in  $\mathcal{L}$ , and (ideally)

2. 
$$\forall e^+ \in E^+ : \mathcal{K} \models H(e^+)$$

3.  $\forall e^- \in E^- : \mathcal{K} \not\models H(e^-)$ 





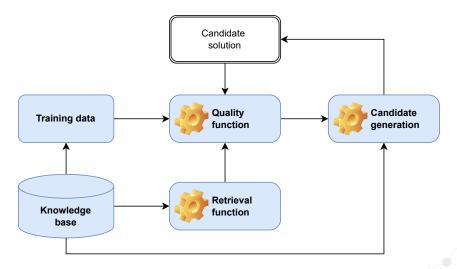
#### Formal definition

- Supervised learning with background knowledge (adapted from [?])
- ► Given:
  - $\blacktriangleright \text{ Formal logic } \mathcal{L} \text{, e.g. } \mathcal{ALC}$
  - ▶ Background knowledge in form of knowledge base  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
  - Set of positive examples  $E^+ \subseteq N_I$
  - Set of negative examples  $E^- \subseteq N_I$
- Goal: Find at least one hypothesis  $H \in \mathcal{H}$  with
  - 1. *H* is a class expression in  $\mathcal{L}$ , and (ideally)
  - 2.  $\forall e^+ \in E^+ : \mathcal{K} \models H(e^+)$
  - 3.  $\forall e^- \in E^- : \mathcal{K} \not\models H(e^-)$
- Practically, aim to find  $H \in \underset{C \in \mathcal{L}}{\operatorname{argmax}} Q(C)$  [?]





#### **Common Approach**







#### **Example: Refinement Operator**

- ▶ Let  $(S, \sqsubseteq)$  be a space with a quasi-ordering
- A top-down refinement operator  $\rho : S \to 2^S$  is a mapping with  $\rho(x) \sqsubseteq x$  [?]





#### Example: Refinement Operator

- ▶ Let  $(S, \sqsubseteq)$  be a space with a quasi-ordering
- A top-down refinement operator  $\rho : S \to 2^S$  is a mapping with  $\rho(x) \sqsubseteq x$  [?]

#### Example

- $\blacktriangleright$  Let S be the set of all concepts in our language  $\mathcal{L}=\mathcal{ALC}$
- The following operator  $\rho$  is a top-down refinement operator



### Class Expression Learning Example





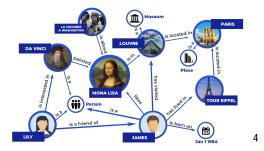
•  $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$ 

#### <sup>4</sup>Source: https://bit.ly/3sxCj6e



### Class Expression Learning Example





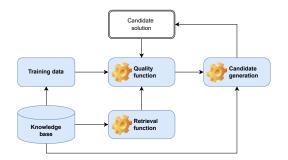
•  $E^+ = \{Louvre, TourEiffel\}, E^- = \{Lily, James\}$ 

▶  $\rho(\top) = \{Person, Museum, Place, \exists is\_located\_in. \top, ...\}$ 

<sup>4</sup>Source: https://bit.ly/3sxCj6e







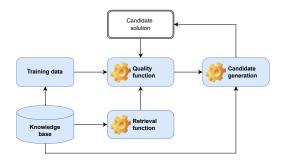
Retrieval is expensive

Ngonga: Concept Learning in Description Logics

12/64



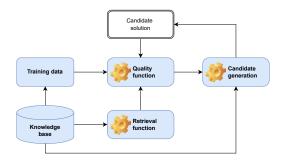




- ► Retrieval is expensive ⇒ Exploit SPARQL
- Quality functions are often myopic



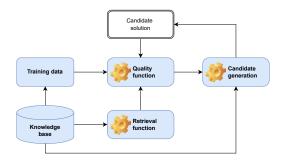




- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- Candidate generation is expensive



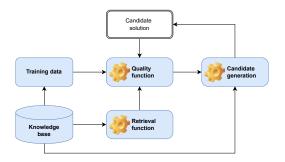




- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming



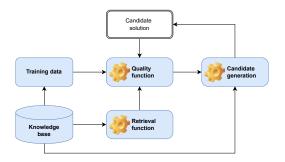




- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- Search space is large







- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length





## Section 3

### **Representing Concepts as SPARQL**





- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]





#### From $\mathcal{ALC}$ to SPARQL

- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

Class ExpressionGraph Pattern  $\mathfrak{p} = \tau(C_i, ?var)$  $A \in N_C$ ?var rdf:type A.





- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

| Class Expression        | Graph Pattern $\mathfrak{p} = 	au(C_i, ?var)$                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------|
| $A \in N_C$<br>$\neg C$ | ?var rdf:type A.<br>{?var ?p ?o} UNION {?s ?p ?var}.<br>FILTER NOT EXISTS $\{\tau(C, ?var)\}$ |





- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

| Class Expression               | Graph Pattern $\mathfrak{p} = 	au(\mathcal{C}_i, ?	extsf{var})$                      |
|--------------------------------|--------------------------------------------------------------------------------------|
| $A \in N_C$<br>$\neg C$        | <pre>?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}.</pre>                         |
| $C_1 \sqcap \ldots \sqcap C_n$ | FILTER NOT EXISTS $\{\tau(C, ?var)\}$<br>$\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$ |





- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

| Class Expression               | Graph Pattern $\mathfrak{p}=	au(\mathcal{C}_i, 2 \mathtt{var})$           |
|--------------------------------|---------------------------------------------------------------------------|
| $A \in N_C$                    | ?var rdf:type A.                                                          |
| −C                             | {?var ?p ?o} UNION {?s ?p ?var}.<br>FILTER NOT EXISTS { $\tau(C, ?var)$ } |
| $C_1 \sqcap \ldots \sqcap C_n$ | $\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$                               |
| $C_1 \sqcup \ldots \sqcup C_n$ | $\{\tau(C_1, 2 \text{var})\}$ UNION UNION $\{\tau(C_n, 2 \text{var})\}$   |





- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

| Class Expression                                                            | Graph Pattern $\mathfrak{p} = 	au(\mathcal{C}_i, ?\texttt{var})$                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A \in N_C$<br>$\neg C$                                                     | ?var rdf:type A.<br>{?var ?p ?o} UNION {?s ?p ?var}.<br>FILTER NOT EXISTS { <i>t</i> ( <b>C</b> ,?var)}                                                                                                                                                                                 |
| $C_1 \sqcap \ldots \sqcap C_n$ $C_1 \sqcup \ldots \sqcup C_n$ $\exists r.C$ | $\{\tau(C_1, 2 \text{var}) \dots \tau(C_n, 2 \text{var})\}$<br>$\{\tau(C_1, 2 \text{var}) \dots \tau(C_n, 2 \text{var})\}$<br>$\{\tau(C_1, 2 \text{var})\} \text{ UNION } \dots \text{ UNION } \{\tau(C_n, 2 \text{var})\}$<br>$\{2 \text{var } r \ 2 \text{s. } \tau(C, 2 \text{s})\}$ |





- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [?]

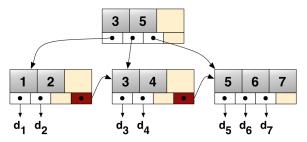
| Class Expression               | Graph Pattern $\mathfrak{p}=	au(\mathcal{C}_i, 2 	extsf{var})$      |
|--------------------------------|---------------------------------------------------------------------|
| $A \in N_{C}$                  | ?var rdf:type A.                                                    |
| $\neg C$                       | {?var ?p ?o} UNION {?s ?p ?var}.                                    |
|                                | FILTER NOT EXISTS $\{	au({\sf C}, ? {	t var})\}$                    |
| $C_1 \sqcap \ldots \sqcap C_n$ | $\{\tau(C_1, 2 \text{var}) \dots \tau(C_n, 2 \text{var})\}$         |
| $C_1 \sqcup \ldots \sqcup C_n$ | $\{	au(C_1, 2 	ext{var})\}$ UNION UNION $\{	au(C_n, 2 	ext{var})\}$ |
| ∃ <i>r</i> .C                  | $(2 r r 2.5, \tau(C, 2.5))$                                         |
| ∀ <i>r.C</i>                   | { ?var r ?s0.                                                       |
|                                | { SELECT ?var (count(?s1) AS ?cnt1)                                 |
|                                | WHERE { ?var r ?s1. $\tau$ ( $C$ , ?s1)}                            |
|                                | GROUP BY ?var }                                                     |
|                                | { SELECT ?var (count(?s2) AS ?cnt2)                                 |
|                                | WHERE { ?var r ?s2 .}                                               |
|                                | GROUP BY ?var }                                                     |
|                                | FILTER ( ?cnt1 = ?cnt2 ) }                                          |



### Representing Concepts as SPARQL Storage Solutions



- Important difference are indexing data structures
- ► Typical indexes include
  - Resource index, e.g., a hash table
  - ► Triple index, e.g., a B<sup>+</sup> tree



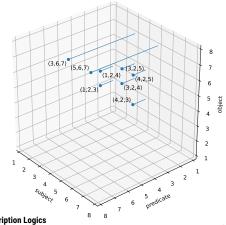




#### **TENTRIS: Idea**

#### Idea [?]

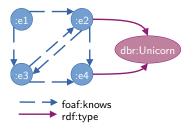
- Exploit tensor representation to accelerate querying
- Devise data structure to accommodate rapid querying







From RDF to Tensors







From RDF to Tensors

| :el :e2<br>dbr:Unicorn<br>:e3 :e4 | term        | <i>id</i> (term) |
|-----------------------------------|-------------|------------------|
|                                   | :e1         | 1                |
| - toaf:knows                      | foaf:knows  | 2                |
| rdf:type                          | :e2         | 3                |
|                                   | :e3         | 4                |
|                                   | :e4         | 5                |
|                                   | rdf:type    | 6                |
|                                   | dbr:Unicorn | 7                |
|                                   | unbound     | 8                |





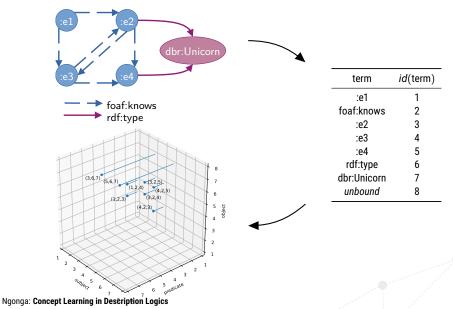
From RDF to Tensors

| :e1<br>:e3 |       | e2<br>e4      | dbr:Ut | nicorn |   | term        | <i>id</i> (term) |
|------------|-------|---------------|--------|--------|---|-------------|------------------|
|            |       | _             |        |        |   | :e1         | 1                |
|            |       | f:knows       |        |        |   | foaf:knows  | 2                |
|            | rdf:  | type          |        |        |   | :e2         | 3                |
|            |       |               |        |        |   | :e3         | 4                |
|            | id(a) | id(n)         | id(a)  |        |   | :e4         | 5                |
|            | id(s) | <i>id</i> (p) | id(o)  |        |   | rdf:type    | 6                |
|            | 1     | 2             | 3      |        |   | dbr:Unicorn | 7                |
|            | 1     | 2             | 4      |        |   | unbound     | 8                |
|            | 3     | 2             | 4      |        | / |             |                  |
|            | 3     | 2             | 5      |        |   |             |                  |
|            | 4     | 2             | 3      |        |   |             |                  |
|            | 4     | 2             | 5      |        |   |             |                  |
|            | 3     | 6             | 7      |        |   |             |                  |
|            | 5     | 6             | 7      |        |   |             |                  |





From RDF to Tensors



17 / 64





**TENTRIS: Data Model** 

• Consider order-*n* tensors  $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$ 





**TENTRIS: Data Model** 

- Consider order-*n* tensors  $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$ 
  - $\blacktriangleright \ \mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$





**TENTRIS: Data Model** 

- Consider order-*n* tensors  $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$ 
  - $\blacktriangleright \ \mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$
  - $\blacktriangleright \ \ \mathbb B$  or  $\mathbb N$  as co-domain



### Representing Concepts as SPARQL TENTRIS: Data Model



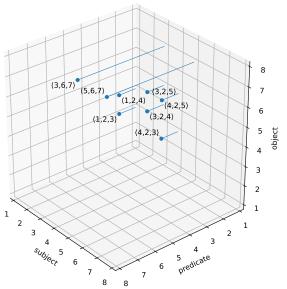
• Consider order-*n* tensors  $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$ 

- $\blacktriangleright \ \mathbf{K}_1 = \dots = \mathbf{K}_n \subset \mathbb{N}$
- $\blacktriangleright \ \ \mathbb B$  or  $\mathbb N$  as co-domain
- ▶  $\mathbf{k} \in \mathbf{K}$  is a key with key parts  $\langle \mathbf{k}_1, \dots, \mathbf{k}_n \rangle$
- Values v in a tensor are accessed in array style, e.g.,  $T[\mathbf{k}] = v$





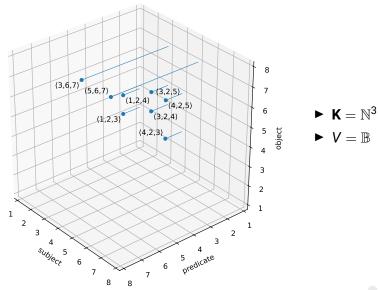
**TENTRIS: Data Model** 







**TENTRIS: Data Model** 







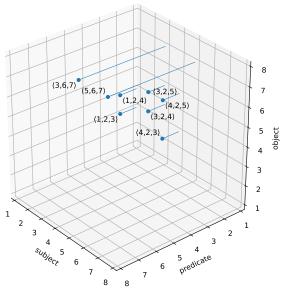
►  $\mathbf{K} = \mathbb{N}^3$ 

 $\blacktriangleright$  V =  $\mathbb{B}$ 

► T[(3, 6, 7)] = 1

 $\blacktriangleright T[\langle 3, 6, 3 \rangle] = 0$ 

**TENTRIS: Data Model** 

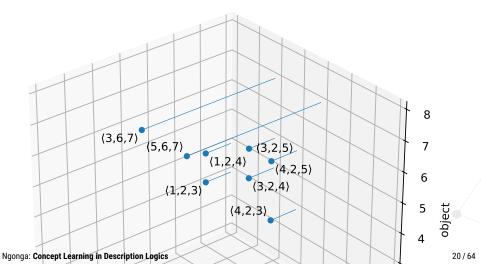






**TENTRIS: Data Model** 

Slicing selects portion of T, e.g.,  $T^{(1)} := T[1, 2, :]$  is order-1 tensor

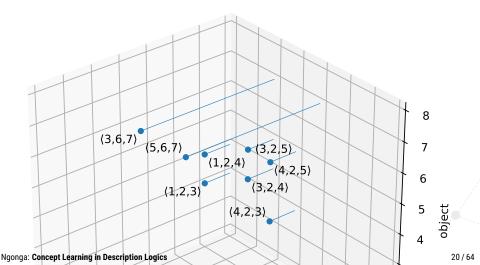






TENTRIS: Data Model

- Slicing selects portion of T, e.g.,  $T^{(1)} := T[1, 2, :]$  is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]







#### TENTRIS: Data Model

- Slicing selects portion of T, e.g.,  $T^{(1)} := T[1, 2, :]$  is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]
- ► Slices can be joined via Einstein summation [?]







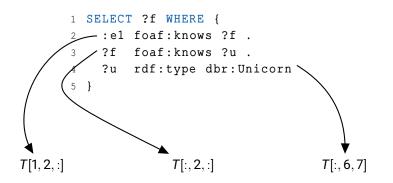
#### **TENTRIS-Einstein Summation**

1 SELECT ?f WHERE {
2 :el foaf:knows ?f.
3 ?f foaf:knows ?u.
4 ?u rdf:type dbr:Unicorn
5 }





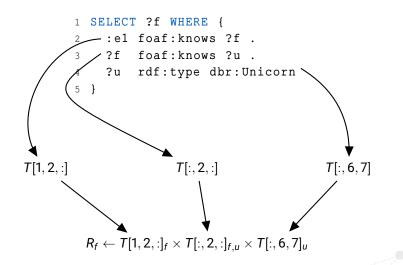
**TENTRIS-Einstein Summation** 







**TENTRIS-Einstein Summation** 







TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ egin{array}{cc} :, & ext{if } Q_i \in U, \ id(Q_i), & ext{otherwise.} \end{array} 
ight.$$



## **Representing Concepts as SPARQL** TENTRIS: Querying



► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array} 
ight.$$

• BGP 
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{\mathcal{B}^{(i)}}]_{\langle l \in \mathcal{B}^{(i)} | l \in U \rangle}$$

Ngonga: Concept Learning in Description Logics



### **Representing Concepts as SPARQL** TENTRIS: Querying



► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array} 
ight.$$

• BGP 
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

• The projection  $\Pi_{U'}(B(g))$  with  $U' \subseteq U$  is given by

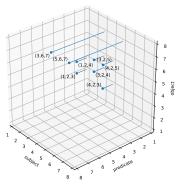
$$T''_{\langle l \in U' \rangle} \leftarrow \bigotimes_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

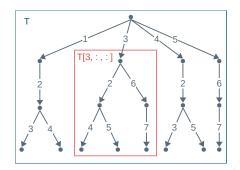


## **Representing Concepts as SPARQL** TENTRIS: Hypertrie



- Query for any tensor slice efficiently
- Allow for efficient querying

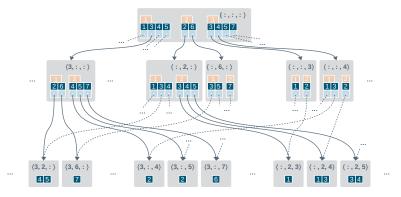








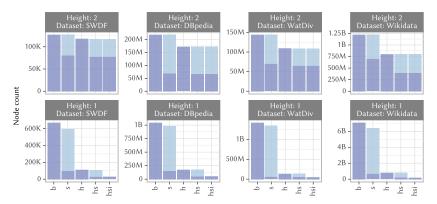
**TENTRIS: Hypertrie** 



- Query for any tensor slice efficiently
- Storage bound is reduced from O(d! ⋅ d ⋅ z(h)) for all collation orders to O(2<sup>d-1</sup> ⋅ d ⋅ z(h))



## **Representing Concepts as SPARQL** TENTRIS: Hypertrie



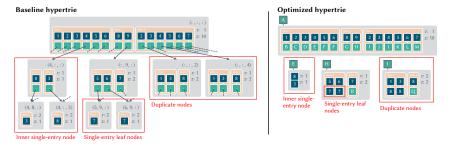
- Hypertrie topology seems sparse
- Compression to improve space, loading and query times [?]







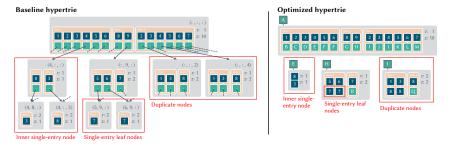
#### **TENTRIS: Compressed Hypertrie**



#### Compress data based on local and global node topology



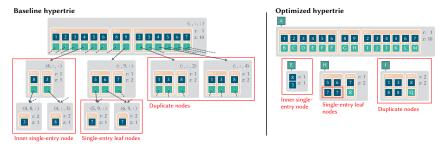




- Compress data based on local and global node topology
- ► 3 compression approaches
  - 1. Remove duplicates via hashing (global)



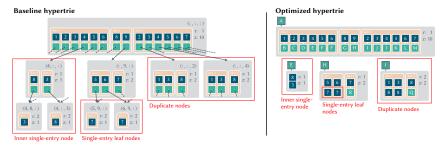




- Compress data based on local and global node topology
- ► 3 compression approaches
  - 1. Remove duplicates via hashing (global)
  - 2. Single-entry inner nodes (local) store sub-hypertries directly







- Compress data based on local and global node topology
- 3 compression approaches
  - 1. Remove duplicates via hashing (global)
  - 2. Single-entry inner nodes (local) store sub-hypertries directly
  - 3. Single-entry leaf nodes are eliminated via in-place storage (local)





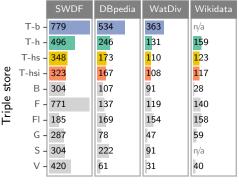
- Comparison with state-of-the-art approaches
- ► Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
- Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)





#### TENTRIS: Compressed Hypertrie

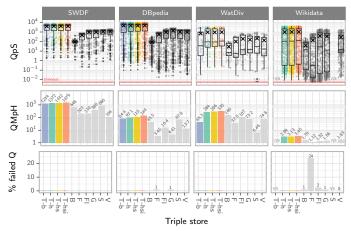
- Comparison with state-of-the-art approaches
- ► Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
- Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)



bytes/triple (< less is better)





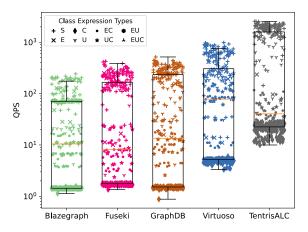


- Better runtimes on all datasets
- Can operate on very large datasets (no time-outs)





#### **TENTRIS: Carcinogenesis**

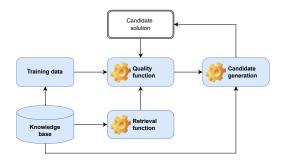


- ► Comparison on supervised machine learning tasks in *ALC*
- Better runtimes on all datasets considered



### Learning problem Challenges



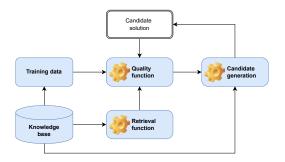


- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- Quality functions are often myopic



### Learning problem Challenges





- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length





## Section 4

## **Improving Quality Functions**

Ngonga: Concept Learning in Description Logics



### Improving Quality Functions Refinement Operators



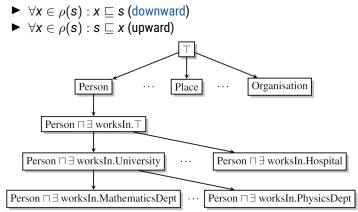
- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator  $\rho : S \to 2^S$  with
  - $\forall x \in \rho(s) : x \sqsubseteq s \text{ (downward)}$
  - $\forall x \in \rho(s) : s \sqsubseteq x \text{ (upward)}$



## Improving Quality Functions Refinement Operators



- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator  $\rho : S \to 2^S$  with





Improving Quality Functions Quality Functions – OCEL



- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree



Improving Quality Functions Quality Functions – OCEL



- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|\mathcal{E}^+ \setminus \mathcal{R}(\mathcal{C})| + |\mathcal{R}(\mathcal{C}) \cap \mathcal{E}^-|}{|\mathcal{E}|}$$
 $\operatorname{acc\_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$ 



Improving Quality Functions Quality Functions – OCEL



- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|\mathcal{E}^+ \setminus \mathcal{R}(\mathcal{C})| + |\mathcal{R}(\mathcal{C}) \cap \mathcal{E}^-|}{|\mathcal{E}|}$$
 $\operatorname{acc\_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$ 

► The score is given by

$$\operatorname{score}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) + \alpha \cdot \operatorname{acc}_{\operatorname{gain}}(\mathcal{C}) - \beta \cdot |\mathcal{C}| \quad (\alpha, \beta \ge \mathbf{0}),$$

where  $\alpha = 0.5$  and  $\beta = 0.02$  are typical default values.





#### **Quality Functions – CELOE**

► Accuracy metric  $acc_c$  for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left( t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc\_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$





#### **Quality Functions – CELOE**

► Accuracy metric  $acc_c$  for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left( t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc\_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = acc<sub>c</sub>(C, t) +  $\alpha \cdot acc_{gain_c}(C) - \beta \cdot |C|$  ( $\alpha, \beta \ge 0$ ) where typical values are  $\alpha = 0.3$  and  $\beta = 0.05$ .





#### **Quality Functions – CELOE**

► Accuracy metric acc<sub>c</sub> for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left( t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc\_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) =  $\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$  ( $\alpha, \beta \ge 0$ ) where typical values are  $\alpha = 0.3$  and  $\beta = 0.05$ .

#### Problem: Myopia

Current metrics do not consider future accuracy of concepts





#### **Quality Functions – CELOE**

► Accuracy metric acc<sub>c</sub> for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left( t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc\_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = acc<sub>c</sub>(C, t) +  $\alpha \cdot acc_{\text{gain}_c}(C) - \beta \cdot |C|$  ( $\alpha, \beta \ge 0$ ) where typical values are  $\alpha = 0.3$  and  $\beta = 0.05$ .

#### Problem: Myopia

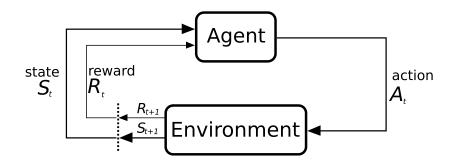
Current metrics do not consider future accuracy of concepts

Optimize for cumulative discounted future rewards [?]





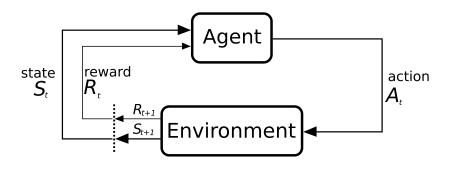
**Reinforcement Learning** 







**Reinforcement Learning** 



- $S_t$  = Concept C •  $R_t = \begin{cases} 1 & \text{if } \operatorname{acc}(C) = 1 \\ 0 & \text{else} \end{cases}$
- ► A<sub>t</sub> = Transition from concept C to some concept D





**Reinforcement Learning – Q Function** 



 $G_t = \sum_{i=0}^n \gamma^i R_{t+i}$ 





**Reinforcement Learning – Q Function** 

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function  $Q_{\pi} : S \times A \rightarrow \mathbb{R}$  with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

Ngonga: Concept Learning in Description Logics





**Reinforcement Learning – Q Function** 

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function  $Q_{\pi} : S \times A \rightarrow \mathbb{R}$  with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

• Observation: Infinite number of states as search space is infinite





**Reinforcement Learning – Q Function** 

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function  $Q_{\pi} : S \times A \rightarrow \mathbb{R}$  with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} 
ight]$$

- Observation: Infinite number of states as search space is infinite
- ► Apply deep Q learning with target network [?]

$$\mathcal{L}(\Theta_i) = \mathbb{E}_{(s,a,R,s') \sim U(\mathcal{D})} \left[ \left( R + \gamma \max_{\mathbf{a}' \in \mathcal{A}(\mathbf{s}')} Q(s',a';\Theta_i^-) - Q(s,a;\Theta_i) \right)^2 \right]$$

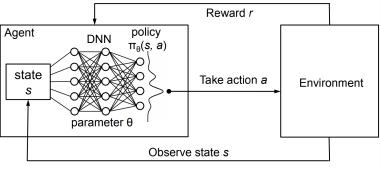




**Reinforcement Learning – DRILL** 

• Convolutional deep Q-Network with  $\Theta = [\omega, \mathbf{W}, \mathbf{H}]$ 

 $\varphi([\mathbf{s},\mathbf{s}',\mathbf{e}_{+},\mathbf{e}_{-}];\Theta) = \textit{ReLU}\Big(\textit{vec}(\textit{ReLU}\big[\Psi([\mathbf{s},\mathbf{s}',\mathbf{e}_{+},\mathbf{e}_{-}])*\omega\big])\cdot\mathbf{W}\Big)\cdot\mathbf{H}$ 



Source: [?]



### Improving Quality Functions TransE



#### Assumptions

- Resources and properties are vectors
- If  $(s, p, o) \in E$ , then  $\vec{s} + \vec{p} = \vec{o}$





#### TransE

- ► Assumptions
  - Resources and properties are vectors
  - If  $(s, p, o) \in E$ , then  $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(\vec{s}+\vec{p},\vec{o})$$





#### TransE

- ► Assumptions
  - Resources and properties are vectors
  - If  $(s, p, o) \in E$ , then  $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(ec{s} + ec{p}, ec{o})$$

Problem: Loss function converges to trivial solution





#### TransE

- Assumptions
  - Resources and properties are vectors
  - If  $(s, p, o) \in E$ , then  $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o) \in E} d(ec{s} + ec{p}, ec{o})$$

- Problem: Loss function converges to trivial solution
- Solution: Add negative information and margin  $\gamma \in \mathbb{R}^+$
- Loss is now

$$L = \sum_{(s,p,o)\in E} \sum_{(s',p,o')\in S'(s,p,o)} [\gamma + d(\vec{s} + \vec{p}, \vec{o}) - d(\vec{s'} + \vec{p}, \vec{o'})]_+$$

where

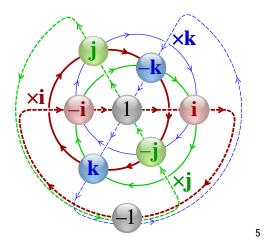
S'(s,p,o) = sample({(s',p,o)|s' ∈ V} ∪ {(s,p,o')|o' ∈ V},1)
 S'(s,p,o) ∩ E = Ø
 [x]<sub>+</sub> = max{0,x}

Ngonga: Concept Learning in Description Logics





Quaternions:  $\mathbb{H}$ 



<sup>5</sup>https://en.wikipedia.org/wiki/Quaternion#/media/File: Cayley\_Q8\_quaternion\_multiplication\_graph.svg

Ngonga: Concept Learning in Description Logics





Quaternions:  $\mathbb{H}$ 

- ► Can define embeddings in this space: QMult [?]
  - ►  $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
  - Scoring function  $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$ , where





Quaternions: III

- ► Can define embeddings in this space: QMult [?]
  - $\blacktriangleright \ \vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
  - Scoring function  $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$ , where
    - $\otimes$  is the Hamiltonian product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{H}$ )
    - is the quaternion inner product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{R}$ )





Quaternions:  $\mathbb{H}$ 

- ► Can define embeddings in this space: QMult [?]
  - ►  $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
  - Scoring function  $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$ , where
    - $\otimes$  is the Hamiltonian product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{H}$ )
    - is the quaternion inner product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{R}$ )
  - ► Loss function over training data  $\Gamma$  with  $Y_{spo} \in \{-1, +1\}$  is given by  $\sum_{(s,p,o)\in\Gamma} \log(1 + \exp(-Y_{spo}\varphi(s,p,o)))$





Quaternions:  $\mathbb{H}$ 

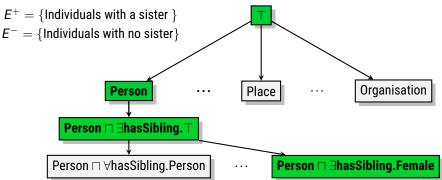
- ► Can define embeddings in this space: QMult [?]
  - ►  $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
  - Scoring function  $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$ , where
    - $\otimes$  is the Hamiltonian product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{H}$ )
    - is the quaternion inner product ( $\mathbb{H} \times \mathbb{H} \to \mathbb{R}$ )
  - ► Loss function over training data  $\Gamma$  with  $Y_{spo} \in \{-1, +1\}$  is given by  $\sum_{(s,p,o)\in\Gamma} \log(1 + \exp(-Y_{spo}\varphi(s,p,o)))$
- Similar construction for octonions





#### Unsupervised Learning – Training Data

- ► Follow refinement path at random
- ► Select concept C
- Set  $E^+ \subseteq R(C)$  and  $E^- \cap R(C) = \emptyset$





### Improving Quality Functions Evaluation

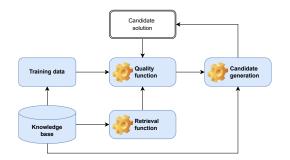


- Used Family und BioPax datasets
- ► Evaluation on 114 learning problems

| Approaches | F1            | Acc                               | Runtime      | # Exp.                                |
|------------|---------------|-----------------------------------|--------------|---------------------------------------|
| CELOE      | $.995\pm0.03$ | $.993 \pm 0.04$                   | $7.5\pm1.1$  | $\textbf{33.5} \pm \textbf{129.3}$    |
| OCEL       | *             | $\textbf{1.00} \pm \textbf{0.00}$ | $11.0\pm1.4$ | $\textbf{2271.6} \pm \textbf{1269.2}$ |
| ELTL       | $.990\pm0.06$ | $.984\pm0.09$                     | $8.1\pm1.6$  | *                                     |
| DRILL      | $1.00\pm0.00$ | $1.00\pm0.00$                     | $1.1\pm0.5$  | $\textbf{9.88} \pm \textbf{38.5}$     |





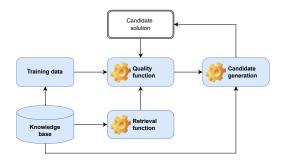


✓ Retrieval is expensive

Ngonga: Concept Learning in Description Logics



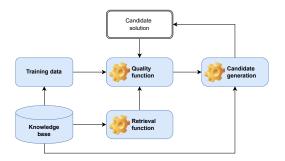




✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic



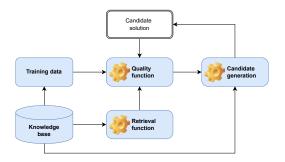




- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- $\checkmark$  Quality functions are often myopic  $\Rightarrow$  Exploit embeddings
- Candidate generation is expensive







- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- Quality functions are often myopic  $\Rightarrow$  Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length





# Section 5

# Learning with Priming

Ngonga: Concept Learning in Description Logics

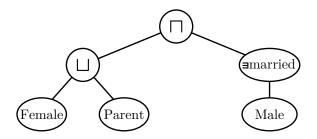
44/64



Evolearner – Idea



▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male

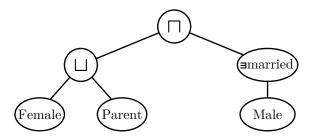




Learning with Priming EVOLEARNER - Idea

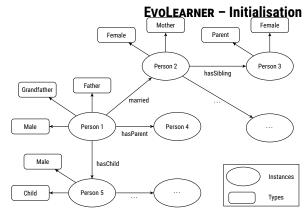


- ▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male
- ► Learn in evolutionary fashion using genetic programming
- Exploit priming effect (remember the green apple)
- Intuition: An individual is an overlap several concepts [?]



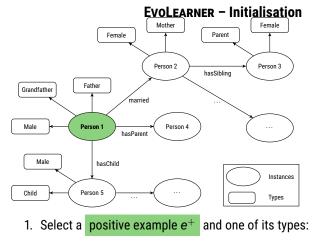






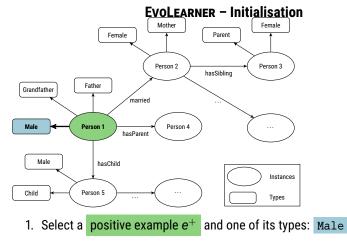






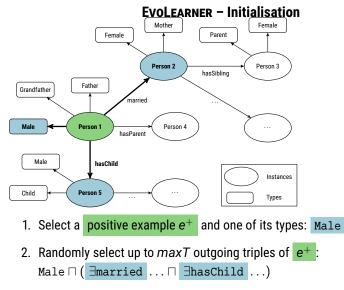






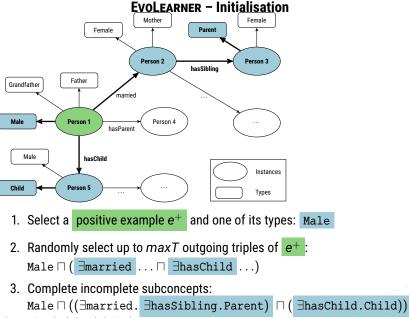












Ngonga: Concept Learning in Description Logics

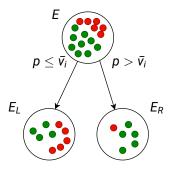




## **EVOLEARNER - Data Properties**

- ► Given a data property *d* from the knowledge base *K* and a set *E* of positive and negative examples
- We precompute up to k splits of the form  $d \leq \bar{v}_i$  per data property
- Splits are computed to maximize information gain:

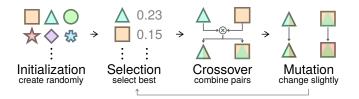
$$IG(E,\bar{v}_i) = H(E) - H(E|\bar{v}_i) = H(E) - \left(\frac{|E_L|}{|E|}H(E_L) + \frac{|E_R|}{|E|}H(E_R)\right)$$







#### **EVOLEARNER - Training**







## **EVOLEARNER - Evaluation**

| Learn. Problem | EvoLearner<br>(ours)              | DL-Learner<br>(CELOE)             | DL-Learner<br>(OCEL)              | Aleph                             | SPaCEL                            |
|----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Carcinogenesis | $\textbf{0.70} \pm \textbf{0.12}$ | $\textbf{0.71} \pm \textbf{0.01}$ | no results                        | $\textbf{0.46} \pm \textbf{0.12}$ | $\textbf{0.60} \pm \textbf{0.08}$ |
| Family         | $1.00\pm0.01$                     | $\textbf{0.98} \pm \textbf{0.05}$ | $\textbf{1.00} \pm \textbf{0.00}$ | _                                 | $\textbf{0.97} \pm \textbf{0.11}$ |
| Hepatitis      | $\textbf{0.79} \pm \textbf{0.08}$ | $\textbf{0.61} \pm \textbf{0.03}$ | no results                        | $\textbf{0.38} \pm \textbf{0.12}$ | no results                        |
| Lymphography   | $\textbf{0.84} \pm \textbf{0.09}$ | $\textbf{0.78} \pm \textbf{0.10}$ | $\textbf{0.85} \pm \textbf{0.10}$ | $\textbf{0.84} \pm \textbf{0.09}$ | $\textbf{0.75} \pm \textbf{0.13}$ |
| Mammographic   | $\textbf{0.81} \pm \textbf{0.06}$ | $\textbf{0.64} \pm \textbf{0.01}$ | $\textbf{0.78} \pm \textbf{0.08}$ | $\textbf{0.48} \pm \textbf{0.08}$ | $\textbf{0.64} \pm \textbf{0.06}$ |
| Mutagenesis    | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.93} \pm \textbf{0.14}$ | timeout                           | $\textbf{0.43} \pm \textbf{0.47}$ | $\textbf{1.00} \pm \textbf{0.00}$ |
| NCTRER         | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.74} \pm \textbf{0.01}$ | $\textbf{0.94} \pm \textbf{0.06}$ | $\textbf{0.71} \pm \textbf{0.18}$ | $\textbf{1.00} \pm \textbf{0.00}$ |
| Premier League | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.99} \pm \textbf{0.04}$ | $\textbf{0.81} \pm \textbf{0.13}$ | $\textbf{0.94} \pm \textbf{0.11}$ | $\textbf{0.98} \pm \textbf{0.04}$ |
| Pyrimidine     | $\textbf{0.91} \pm \textbf{0.14}$ | $\textbf{0.84} \pm \textbf{0.15}$ | $\textbf{0.84} \pm \textbf{0.22}$ | $\textbf{0.90} \pm \textbf{0.32}$ | $\textbf{0.86} \pm \textbf{0.29}$ |



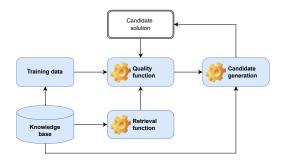


## **EVOLEARNER - Ablation Study**

| Learning Problem | EvoLearner<br>(ours)              | Without<br>Rand. Walk Init.       | Without<br>Data Properties        | Without<br>Both                   |
|------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Carcinogenesis   | $\textbf{0.70} \pm \textbf{0.12}$ | $\textbf{0.60} \pm \textbf{0.21}$ | $\textbf{0.63} \pm \textbf{0.13}$ | $\textbf{0.62} \pm \textbf{0.13}$ |
| Family           | $1.00\pm0.01$                     | $\textbf{0.87} \pm \textbf{0.13}$ | _                                 | $0.86\pm0.14$                     |
| Hepatitis        | $\textbf{0.79} \pm \textbf{0.08}$ | $\textbf{0.67} \pm \textbf{0.15}$ | $\textbf{0.46} \pm \textbf{0.14}$ | $\textbf{0.47} \pm \textbf{0.13}$ |
| Lymphography     | $\textbf{0.84} \pm \textbf{0.09}$ | $\textbf{0.83} \pm \textbf{0.11}$ | -                                 | $\textbf{0.83} \pm \textbf{0.09}$ |
| Mammographic     | $\textbf{0.81} \pm \textbf{0.06}$ | $\textbf{0.78} \pm \textbf{0.08}$ | $\textbf{0.77} \pm \textbf{0.07}$ | $\textbf{0.75} \pm \textbf{0.06}$ |
| Mutagenesis      | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.44} \pm \textbf{0.48}$ | $\textbf{0.50} \pm \textbf{0.51}$ |
| NCTRER           | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.74} \pm \textbf{0.05}$ | $\textbf{0.75} \pm \textbf{0.05}$ |
| Premier League   | $\textbf{1.00} \pm \textbf{0.00}$ | $\textbf{0.98} \pm \textbf{0.04}$ | $\textbf{0.50} \pm \textbf{0.23}$ | $\textbf{0.50} \pm \textbf{0.22}$ |
| Pyrimidine       | $\textbf{0.91} \pm \textbf{0.14}$ | $\textbf{0.83} \pm \textbf{0.22}$ | $0.67\pm0.00$                     | $\textbf{0.67} \pm \textbf{0.00}$ |



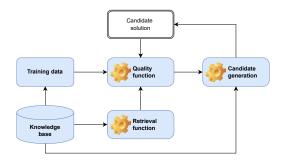




✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic



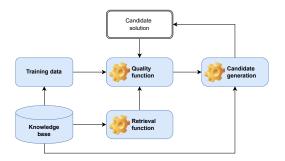




✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic ⇒ Exploit embeddings
 ✓ Candidate generation is expensive



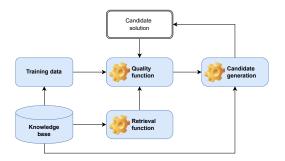




✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic ⇒ Exploit embeddings
 ✓ Candidate generation is expensive ⇒ Exploit priming



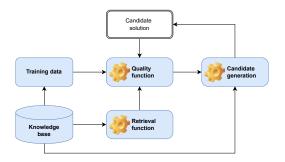




- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- Quality functions are often myopic  $\Rightarrow$  Exploit embeddings
- $\checkmark$  Candidate generation is expensive  $\Rightarrow$  Exploit priming
- Search space is large







- ✓ Retrieval is expensive  $\Rightarrow$  Exploit SPARQL
- ✓ Quality functions are often myopic  $\Rightarrow$  Exploit embeddings
- $\checkmark$  Candidate generation is expensive  $\Rightarrow$  Exploit priming
- ► Search space is large ⇒ Prune by length





# Section 6

CLIP

Ngonga: Concept Learning in Description Logics

52/64

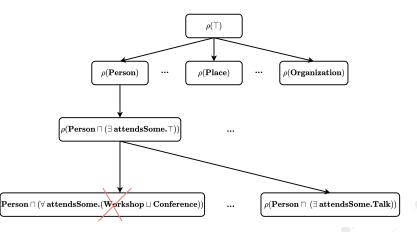






## Approach

- Idea: Prune horizontally by
- predicting target concept length and
- discarding longer refinements







## **Concept Lengths**

Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)





## **Concept Lengths**

- *length*(A) = *length*(⊤) = *length*(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$ , for all concepts C





## **Concept Lengths**

- Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$ , for all concepts C
- ►  $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$ , for all concepts C





## **Concept Lengths**

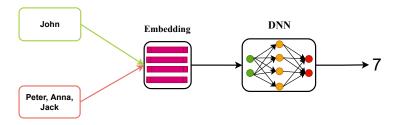
- Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$ , for all concepts C
- ►  $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$ , for all concepts C
- Iength(C ⊔ D) = length(C ⊓ D) = 1 + length(C) + length(D), for all concepts C and D.







## **Concept Length Prediction**



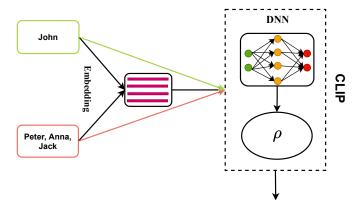
- ► Input: positive and negative examples
- Output: length of the target concept







#### **Concept Learning**

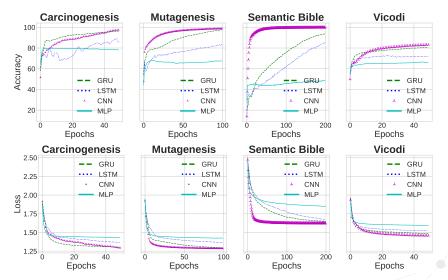


Male  $\square \exists$  hasParent.( $\exists$  hasChild.Female)





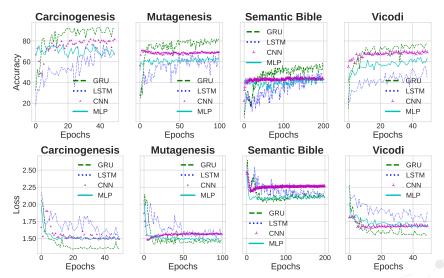
#### Training







#### Validation







## **Network Architecture**

|                       |                     | Ca                 | rcinogei           | nesis              |                   | Mutagenesis |                    |                    | s                  |                   |
|-----------------------|---------------------|--------------------|--------------------|--------------------|-------------------|-------------|--------------------|--------------------|--------------------|-------------------|
| Metric                | LSTM                | GRU                | CNN                | MLP                | RM                | LSTM        | GRU                | CNN                | MLP                | RM                |
| Train. Acc.           | 0.89                | 0.96               | 0.97               | 0.80               | 0.48              | 0.83        | 0.97               | 0.98               | 0.68               | 0.33              |
| Val. Acc.             | 0.76                | 0.93               | 0.82               | 0.77               | 0.48              | 0.70        | 0.82               | 0.71               | 0.65               | 0.35              |
| Test Acc.             | 0.92                | 0.95               | 0.84               | 0.80               | 0.49              | 0.78        | 0.85               | 0.70               | 0.68               | 0.33              |
| Test F1               | 0.88                | 0.92               | 0.71               | 0.59               | 0.33              | 0.76        | 0.85               | 0.70               | 0.67               | 0.32              |
|                       | Semantic Bible      |                    |                    |                    |                   |             |                    |                    |                    |                   |
|                       |                     | Se                 | mantic I           | Bible              |                   |             | ١                  | /icodi             |                    |                   |
| Metric                | LSTM                | Se<br>GRU          | mantic I<br>CNN    | Bible<br>MLP       | RM                | LSTM        | \<br>GRU           | /icodi<br>CNN      | MLP                | RM                |
| Metric<br>Train. Acc. | <b>LSTM</b><br>0.85 |                    |                    |                    | <b>RM</b><br>0.33 | <b>LSTM</b> |                    |                    | <b>MLP</b><br>0.66 | <b>RM</b><br>0.28 |
|                       |                     | GRU                | CNN                | MLP                |                   |             | GRU                | CNN                |                    |                   |
| Train. Acc.           | 0.85                | <b>GRU</b><br>0.93 | <b>CNN</b><br>0.99 | <b>MLP</b><br>0.68 | 0.33              | 0.73        | <b>GRU</b><br>0.81 | <b>CNN</b><br>0.83 | 0.66               | 0.28              |





## **Comparison with SOTA**

|                            |                                   | Carcinogenesis                      |                                   |                         |  |  |  |
|----------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------|--|--|--|
| Metric                     | CELOE                             | OCEL                                | ELTL                              | CLIP                    |  |  |  |
| Acc. ↑                     | $\textbf{0.78} \pm \textbf{0.27}$ | $\textbf{0.89} \pm \textbf{0.31}$   | $\textbf{0.58} \pm \textbf{0.46}$ | <b>0.99</b> ± 0.00      |  |  |  |
| F1↑                        | $\textbf{0.62} \pm \textbf{0.46}$ | _                                   | $\textbf{0.51} \pm \textbf{0.47}$ | $\textbf{0.96}*\pm0.10$ |  |  |  |
| Runtime (min) $\downarrow$ | $\textbf{0.93} \pm \textbf{0.94}$ | $\textbf{3.01} \pm \textbf{0.72}$   | $\textbf{0.75} \pm \textbf{0.07}$ | $\textbf{0.10}*\pm0.09$ |  |  |  |
| Length $\downarrow$        | $\textbf{1.69} \pm 0.89$          | $\textbf{7.81} \pm \textbf{6.88}$   | $\textbf{1.04} \pm \textbf{0.39}$ | $2.00\pm1.28$           |  |  |  |
|                            |                                   | Mutagenesis                         |                                   |                         |  |  |  |
| Metric                     | CELOE                             | OCEL                                | ELTL                              | CLIP                    |  |  |  |
| Acc. ↑                     | $\textbf{0.99} \pm \textbf{0.00}$ | $\textbf{0.71} \pm \textbf{0.45}$   | $\textbf{0.37} \pm \textbf{0.43}$ | <b>0.99</b> ± 0.00      |  |  |  |
| F1 ↑                       | $\textbf{0.81} \pm \textbf{0.35}$ | -                                   | $\textbf{0.29} \pm \textbf{0.40}$ | $\textbf{0.93}*\pm0.18$ |  |  |  |
| Runtime (min) $\downarrow$ | $\textbf{0.70} \pm \textbf{0.77}$ | $\textbf{2.39} \pm \textbf{0.18}$   | $\textbf{0.29} \pm \textbf{0.16}$ | $0.07* \pm 0.05$        |  |  |  |
| Length $\downarrow$        | $\textbf{2.79} \pm \textbf{1.17}$ | $12.63\pm7.03$                      | $\textbf{1.10} \pm \textbf{0.81}$ | <b>2.20</b> ± 1.16      |  |  |  |
|                            |                                   | Semantic Bible                      |                                   |                         |  |  |  |
| Metric                     | CELOE                             | OCEL                                | ELTL                              | CLIP                    |  |  |  |
| Acc. ↑                     | $\textbf{0.99} \pm \textbf{0.02}$ | $\textbf{0.66} \pm \textbf{0.47}$   | $0.59\pm0.37$                     | <b>0.99</b> ± 0.00      |  |  |  |
| F1 ↑                       | $\textbf{0.97} \pm \textbf{0.10}$ | -                                   | $\textbf{0.57} \pm \textbf{0.38}$ | 0.98 ± 0.05             |  |  |  |
| Runtime (min) $\downarrow$ | $\textbf{0.47} \pm \textbf{0.80}$ | $\textbf{22.15} \pm \textbf{96.55}$ | $0.09\pm0.07$                     | $0.06* \pm 0.05$        |  |  |  |
| Length $\downarrow$        | $\textbf{3.85} \pm \textbf{2.44}$ | $\textbf{9.54} \pm \textbf{5.73}$   | $\textbf{1.38} \pm \textbf{1.76}$ | <b>2.52</b> * ± 1.26    |  |  |  |
| Vicodi                     |                                   |                                     |                                   |                         |  |  |  |
| Metric                     | CELOE                             | OCEL                                | ELTL                              | CLIP                    |  |  |  |
| Acc. ↑                     | $\textbf{0.29} \pm \textbf{0.44}$ | $\textbf{0.25} \pm \textbf{0.43}$   | $\textbf{0.28} \pm \textbf{0.44}$ | <b>0.99</b> *±0.00      |  |  |  |
| F1 ↑                       | $\textbf{0.25} \pm \textbf{0.44}$ | -                                   | $\textbf{0.25} \pm \textbf{0.44}$ | $0.97 * \pm 0.09$       |  |  |  |
| Runtime (min) $\downarrow$ | $1.30\pm0.71$                     | $\textbf{4.78} \pm \textbf{1.12}$   | $\textbf{1.81} \pm \textbf{0.46}$ | $\textbf{0.16}*\pm0.12$ |  |  |  |
| Length ↓                   | $10.79 \pm 6.30$                  | $11.54 \pm 6.00$                    | $11.14 \pm 6.11$                  | 1.68* ± 0.98            |  |  |  |

#### Ngonga: Concept Learning in Description Logics





# Section 7

# Summary

Ngonga: Concept Learning in Description Logics



# Summary Open Questions



- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?





# Summary

## **Open Questions**



## Holy Grail

- Can the selection of representations be automated?
- LEMUR and ENEXA
- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?





## Summary Thank You!



Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N'Dah Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif, Muhammed Saleem, and many more

# Thank You! Questions?

- https://dice-research.org
- https://twitter.com/DiceResearch
- https://twitter.com/NgongaAxel



# **References I**



Ngonga: Concept Learning in Description Logics