
Concept Learning in Description
Logics

Neurosymbolic Concept Learning

Axel Ngonga

August 14, 2023

Section 1

Motivation

Ngonga: Concept Learning in Description Logics 1 / 64

Introduction
Data Web

▶ RDF knowledge bases are now first-class citizens of the Web
▶ Approx. 50% of websites contain RDF1

▶ 2+ billion URLs contain RDF statements
▶ Ca. 100 billion statements in Linked Open Data

1See http://webdatacommons.org/structureddata/#results-2022-1
Ngonga: Concept Learning in Description Logics 2 / 64

http://webdatacommons.org/structureddata/#results-2022-1

Introduction
Description Logics

▶ Terminology of RDF datasets in description logics
▶ Popular DLs include ELH (e.g., for biomedical domain),ALC (e.g.,

for ML-driven applications), and SROIQ (e.g., on the Web)
Ngonga: Concept Learning in Description Logics 3 / 64

Motivation
Example

2

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ Neural solution: e(vi) = φ

(⊕
vj∈Ni

e(vj), e(vi)

)
▶ Pro: Time-efficient
▶ Contra: Unintelligible, does not exploits background knowledge

2Source: https://bit.ly/3sxCj6e
Ngonga: Concept Learning in Description Logics 4 / 64

https://bit.ly/3sxCj6e

Motivation
Example

2

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ Neural solution: e(vi) = φ

(⊕
vj∈Ni

e(vj), e(vi)

)
▶ Pro: Time-efficient
▶ Contra: Unintelligible, does not exploits background knowledge
2Source: https://bit.ly/3sxCj6e

Ngonga: Concept Learning in Description Logics 4 / 64

https://bit.ly/3sxCj6e

Motivation
Example

3

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ Solution inALCO: H = {∃ isLocatedIn.{Paris}}
▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(

3Source: https://bit.ly/3sxCj6e
Ngonga: Concept Learning in Description Logics 5 / 64

https://bit.ly/3sxCj6e

Motivation
Example

3

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}
▶ Solution inALCO: H = {∃ isLocatedIn.{Paris}}

▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(

3Source: https://bit.ly/3sxCj6e
Ngonga: Concept Learning in Description Logics 5 / 64

https://bit.ly/3sxCj6e

Motivation
Example

3

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}
▶ Solution inALCO: H = {∃ isLocatedIn.{Paris}}
▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(
3Source: https://bit.ly/3sxCj6e

Ngonga: Concept Learning in Description Logics 5 / 64

https://bit.ly/3sxCj6e

Motivation
Goal

Goal

▶ Attempt neuro-symbolic learning on knowledge graphs
▶ Exploit time efficiency of neural approaches
▶ Keep explainability of symbolic approaches

Ngonga: Concept Learning in Description Logics 6 / 64

Section 2

Class Expression Learning

Ngonga: Concept Learning in Description Logics 7 / 64

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from [?])
▶ Given:

▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [?]

Ngonga: Concept Learning in Description Logics 8 / 64

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from [?])
▶ Given:

▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [?]

Ngonga: Concept Learning in Description Logics 8 / 64

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from [?])
▶ Given:

▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [?]

Ngonga: Concept Learning in Description Logics 8 / 64

Class Expression Learning
Common Approach

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

Ngonga: Concept Learning in Description Logics 9 / 64

Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [?]

Example

▶ Let S be the set of all concepts in our language L = ALC
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =

C
NC ∪ ¬NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Concept Learning in Description Logics 10 / 64

Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [?]

Example

▶ Let S be the set of all concepts in our language L = ALC
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =

C
NC ∪ ¬NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Concept Learning in Description Logics 10 / 64

Class Expression Learning
Example

4

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ ρ(⊤) = {Person,Museum,Place,∃is_located_in.⊤, . . .}

4Source: https://bit.ly/3sxCj6e
Ngonga: Concept Learning in Description Logics 11 / 64

https://bit.ly/3sxCj6e

Class Expression Learning
Example

4

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}
▶ ρ(⊤) = {Person,Museum,Place,∃is_located_in.⊤, . . .}

4Source: https://bit.ly/3sxCj6e
Ngonga: Concept Learning in Description Logics 11 / 64

https://bit.ly/3sxCj6e

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive

⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming

▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large

⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 12 / 64

Section 3

Representing Concepts as SPARQL

Ngonga: Concept Learning in Description Logics 13 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]

Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.

¬C {?var ?p ?o} UNION {?s ?p ?var}.
FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}

C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}

∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}

∀ r.C { ?var r ?s0.
{ SELECT ?var (count(?s1) AS ?cnt1)

WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }
Ngonga: Concept Learning in Description Logics 14 / 64

Representing Concepts as SPARQL
Storage Solutions

▶ Important difference are indexing data structures
▶ Typical indexes include

▶ Resource index, e.g., a hash table
▶ Triple index, e.g., a B+ tree

Ngonga: Concept Learning in Description Logics 15 / 64

Representing Concepts as SPARQL
TENTRIS: Idea

Idea [?]
▶ Exploit tensor representation to accelerate querying
▶ Devise data structure to accommodate rapid querying

Ngonga: Concept Learning in Description Logics 16 / 64

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Concept Learning in Description Logics 17 / 64

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Concept Learning in Description Logics 17 / 64

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Concept Learning in Description Logics 17 / 64

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Concept Learning in Description Logics 17 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V

▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Concept Learning in Description Logics 18 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N

▶ B or N as co-domain
▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Concept Learning in Description Logics 18 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Concept Learning in Description Logics 18 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Concept Learning in Description Logics 18 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Concept Learning in Description Logics 19 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B

▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Concept Learning in Description Logics 19 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Concept Learning in Description Logics 19 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor

▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [?]

Ngonga: Concept Learning in Description Logics 20 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor
▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]

▶ Slices can be joined via Einstein summation [?]

Ngonga: Concept Learning in Description Logics 20 / 64

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor
▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [?]

Ngonga: Concept Learning in Description Logics 20 / 64

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Concept Learning in Description Logics 21 / 64

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Concept Learning in Description Logics 21 / 64

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Concept Learning in Description Logics 21 / 64

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Concept Learning in Description Logics 22 / 64

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Concept Learning in Description Logics 22 / 64

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Concept Learning in Description Logics 22 / 64

Representing Concepts as SPARQL
TENTRIS: Hypertrie

▶ Query for any tensor slice efficiently
▶ Allow for efficient querying

1 3 4 5

2 62

3 4 74 5

2

5

6

7

T

T[3, : , :]

3

Ngonga: Concept Learning in Description Logics 23 / 64

Representing Concepts as SPARQL
TENTRIS: Hypertrie

(: , : , : 〉
1 2 3

41 3 5 2 6 53 4 7

〈3, : , : 〉

2 46 5

〈3, 6, : 〉〈3, 2, : 〉 〈3, : , 4〉 〈3, : , 5〉 〈3, : , 7〉

1 2
7

7 2 2 6

 〈 : , 2, : 〉

3 4
2

 〈 : , 2, 4〉 〈 : , 2, 5〉

3

5

1

〈 : , 2, 3〉

1

 〈 : , 6, : 〉

1
3 5

 〈 : , : , 4〉

1 23
1 2

 〈 : , : , 3〉

1 2
1 2

54

1
1 3 4

43

7
2…… …

… … … …

…
…

……

… ……… …

…

…

▶ Query for any tensor slice efficiently
▶ Storage bound is reduced fromO(d! · d · z(h)) for all collation

orders toO(2d−1 · d · z(h))

Ngonga: Concept Learning in Description Logics 24 / 64

Representing Concepts as SPARQL
TENTRIS: Hypertrie

0

50K

100K

N
od

e
co

un
t

Height: 2
Dataset: SWDF

0

50M

100M

150M

200M

Height: 2
Dataset: DBpedia

0

50M

100M

150M

Height: 2
Dataset: WatDiv

0
250M
500M
750M

1B
1.25B

Height: 2
Dataset: Wikidata

b s h hs hs
i

0

200K

400K

600K

Height: 1
Dataset: SWDF

b s h hs hs
i

0

250M

500M

750M

1B

Height: 1
Dataset: DBpedia

b s h hs hs
i

0

500M

1B

Height: 1
Dataset: WatDiv

b s h hs hs
i

0

2B

4B

6B

Height: 1
Dataset: Wikidata

▶ Hypertrie topology seems sparse
▶ Compression to improve space, loading and query times [?]

Ngonga: Concept Learning in Description Logics 25 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology

▶ 3 compression approaches
1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Concept Learning in Description Logics 26 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)

2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Concept Learning in Description Logics 26 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly

3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Concept Learning in Description Logics 26 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Concept Learning in Description Logics 26 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

▶ Comparison with state-of-the-art approaches
▶ Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
▶ Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)

V

S

G

Fl

F

B

T-hsi

T-hs

T-h

T-b

T
ri

p
le

st
or

e

420

304

287

185

771

304

323

348

496

779

SWDF

61

222

78

169

137

107

167

173

246

534

DBpedia

31

91

47

154

119

91

108

110

131

363

WatDiv

bytes/triple (J less is better)

40

59

158

140

28

117

123

159

n/a

n/a

Wikidata

Ngonga: Concept Learning in Description Logics 27 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

▶ Comparison with state-of-the-art approaches
▶ Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
▶ Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)

V

S

G

Fl

F

B

T-hsi

T-hs

T-h

T-b

T
ri

p
le

st
or

e

420

304

287

185

771

304

323

348

496

779

SWDF

61

222

78

169

137

107

167

173

246

534

DBpedia

31

91

47

154

119

91

108

110

131

363

WatDiv

bytes/triple (J less is better)

40

59

158

140

28

117

123

159

n/a

n/a

Wikidata

Ngonga: Concept Learning in Description Logics 27 / 64

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

10−2

10−1

1

101

102

103

104

Q
p

S

SWDF

timeout

DBpedia WatDiv Wikidata

n/a n/a

1

101

102

103

Q
M

p
H

12
34

13
72

14
12

14
79

64
8

20
3

21
0 38

8 86
0

10
4

84
.4

97
.1

11
0 14

4

45
.5

3.
45

16
.4

4.
41

67
.8

13
.7

45
.3

28
4

29
6

33
5

16
0

37
.0

10
7

73
.2

6.
46

74
.8

2.
99

3.
13 3.

45

1.
70

1.
12 1.

32 1.
56 1.

83

n/a n/a

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V

0

10

20

%
fa

ile
d

Q

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V
1 1

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V

Triple store

1

24

2 1 0n/a n/a

▶ Better runtimes on all datasets
▶ Can operate on very large datasets (no time-outs)

Ngonga: Concept Learning in Description Logics 28 / 64

Representing Concepts as SPARQL
TENTRIS: Carcinogenesis

▶ Comparison on supervised machine learning tasks inALC
▶ Better runtimes on all datasets considered

Ngonga: Concept Learning in Description Logics 29 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 30 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 30 / 64

Section 4

Improving Quality Functions

Ngonga: Concept Learning in Description Logics 31 / 64

Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)

Ngonga: Concept Learning in Description Logics 32 / 64

Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)

Ngonga: Concept Learning in Description Logics 32 / 64

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree

▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Concept Learning in Description Logics 33 / 64

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree
▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Concept Learning in Description Logics 33 / 64

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree
▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Concept Learning in Description Logics 33 / 64

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards [?]

Ngonga: Concept Learning in Description Logics 34 / 64

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards [?]

Ngonga: Concept Learning in Description Logics 34 / 64

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts

▶ Optimize for cumulative discounted future rewards [?]

Ngonga: Concept Learning in Description Logics 34 / 64

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards [?]

Ngonga: Concept Learning in Description Logics 34 / 64

Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D

Ngonga: Concept Learning in Description Logics 35 / 64

Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D

Ngonga: Concept Learning in Description Logics 35 / 64

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [?]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Concept Learning in Description Logics 36 / 64

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [?]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Concept Learning in Description Logics 36 / 64

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite

▶ Apply deep Q learning with target network [?]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Concept Learning in Description Logics 36 / 64

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [?]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Concept Learning in Description Logics 36 / 64

Improving Quality Functions
Reinforcement Learning – DRILL

▶ Convolutional deep Q-Network with Θ = [ω,W,H]

φ([s, s′, e+, e−]; Θ) = ReLU
(
vec(ReLU

[
Ψ([s, s′, e+, e−])∗ω

]
)·W
)
·H

Source: [?]

Ngonga: Concept Learning in Description Logics 37 / 64

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Concept Learning in Description Logics 38 / 64

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Concept Learning in Description Logics 38 / 64

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution

▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Concept Learning in Description Logics 38 / 64

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Concept Learning in Description Logics 38 / 64

Improving Quality Functions
Quaternions: H

23/11/2022, 21:31 Cayley Q8 quaternion multiplication graph

https://upload.wikimedia.org/wikipedia/commons/0/04/Cayley_Q8_quaternion_multiplication_graph.svg 1/1

×i

−j

j
−k

k

−i i

×j

−k

k

−i i

×k

−j

j

−1

1−i i×i

−1

1

−j

j

×j

−1

1

−k

k

×k

5

5https://en.wikipedia.org/wiki/Quaternion#/media/File:
Cayley_Q8_quaternion_multiplication_graph.svg

Ngonga: Concept Learning in Description Logics 39 / 64

https://en.wikipedia.org/wiki/Quaternion#/media/File:Cayley_Q8_quaternion_multiplication_graph.svg
https://en.wikipedia.org/wiki/Quaternion#/media/File:Cayley_Q8_quaternion_multiplication_graph.svg

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [?]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where

▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Concept Learning in Description Logics 40 / 64

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [?]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Concept Learning in Description Logics 40 / 64

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [?]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Concept Learning in Description Logics 40 / 64

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [?]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Concept Learning in Description Logics 40 / 64

Improving Quality Functions
Unsupervised Learning – Training Data

▶ Follow refinement path at random
▶ Select concept C
▶ Set E+ ⊆ R(C) and E− ∩ R(C) = ∅
E+ = {Individuals with a sister }
E− = {Individuals with no sister}

⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Person ⊓ ∀hasSibling.Person . . . Person ⊓ ∃hasSibling.Female

Ngonga: Concept Learning in Description Logics 41 / 64

Improving Quality Functions
Evaluation

▶ Used Family und BioPax datasets
▶ Evaluation on 114 learning problems

Approaches F1 Acc Runtime # Exp.

CELOE .995± 0.03 .993± 0.04 7.5± 1.1 33.5± 129.3
OCEL * 1.00± 0.00 11.0± 1.4 2271.6± 1269.2
ELTL .990± 0.06 .984± 0.09 8.1± 1.6 *
DRILL 1.00± 0.00 1.00± 0.00 1.1± 0.5 9.88± 38.5

Ngonga: Concept Learning in Description Logics 42 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive

⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64

Section 5

Learning with Priming

Ngonga: Concept Learning in Description Logics 44 / 64

Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts [?]

Parent Male

married

Female

Ngonga: Concept Learning in Description Logics 45 / 64

Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts [?]

Parent Male

married

Female

Ngonga: Concept Learning in Description Logics 45 / 64

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1

Person 1

Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Concept Learning in Description Logics 46 / 64

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types:

Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Concept Learning in Description Logics 46 / 64

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Concept Learning in Description Logics 46 / 64

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Concept Learning in Description Logics 46 / 64

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

married

Mother
Female

Person 3
hasSibling

Female
Parent

. . .

. . .

Person 4
hasParent

Person 5

hasChild

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Concept Learning in Description Logics 46 / 64

Learning with Priming
EVOLEARNER – Data Properties

▶ Given a data property d from the knowledge base K and a set E of
positive and negative examples

▶ We precompute up to k splits of the form d ≤ v̄i per data property
▶ Splits are computed to maximize information gain:

IG(E, v̄i) = H(E)− H(E|v̄i) = H(E)−
(
|EL|
|E|

H(EL) +
|ER|
|E|

H(ER)

)
E

EL ER

p ≤ v̄i p > v̄i

Ngonga: Concept Learning in Description Logics 47 / 64

Learning with Priming
EVOLEARNER – Training

Initialization
create randomly

Selection
select best

Crossover
combine pairs

Mutation
change slightly

0.23
0.15

Ngonga: Concept Learning in Description Logics 48 / 64

Learning with Priming
EVOLEARNER – Evaluation

EvoLearner DL-Learner DL-Learner Aleph SPaCEL
Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.70± 0.12 0.71 ± 0.01 no results 0.46± 0.12 0.60± 0.08
Family 1.00 ± 0.01 0.98± 0.05 1.00 ± 0.00 — 0.97± 0.11
Hepatitis 0.79 ± 0.08 0.61± 0.03 no results 0.38± 0.12 no results
Lymphography 0.84 ± 0.09 0.78± 0.10 0.85 ± 0.10 0.84± 0.09 0.75± 0.13
Mammographic 0.81 ± 0.06 0.64± 0.01 0.78± 0.08 0.48± 0.08 0.64± 0.06
Mutagenesis 1.00 ± 0.00 0.93± 0.14 timeout 0.43± 0.47 1.00 ±0.00
NCTRER 1.00 ± 0.00 0.74± 0.01 0.94± 0.06 0.71± 0.18 1.00 ± 0.00
Premier League 1.00 ± 0.00 0.99± 0.04 0.81± 0.13 0.94± 0.11 0.98± 0.04
Pyrimidine 0.91 ± 0.14 0.84± 0.15 0.84± 0.22 0.90± 0.32 0.86± 0.29

Ngonga: Concept Learning in Description Logics 49 / 64

Learning with Priming
EVOLEARNER – Ablation Study

EvoLearner Without Without Without
Learning Problem (ours) Rand. Walk Init. Data Properties Both

Carcinogenesis 0.70 ± 0.12 0.60 ± 0.21 0.63 ± 0.13 0.62 ± 0.13
Family 1.00 ± 0.01 0.87 ± 0.13 — 0.86 ± 0.14
Hepatitis 0.79 ± 0.08 0.67 ± 0.15 0.46 ± 0.14 0.47 ± 0.13
Lymphography 0.84 ± 0.09 0.83 ± 0.11 — 0.83 ± 0.09
Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.77 ± 0.07 0.75 ± 0.06
Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.48 0.50 ± 0.51
NCTRER 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.75 ± 0.05
Premier League 1.00 ± 0.00 0.98 ± 0.04 0.50 ± 0.23 0.50 ± 0.22
Pyrimidine 0.91 ± 0.14 0.83 ± 0.22 0.67 ± 0.00 0.67 ± 0.00

Ngonga: Concept Learning in Description Logics 50 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 51 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 51 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming

▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 51 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large

⇒ Prune by length

Ngonga: Concept Learning in Description Logics 51 / 64

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 51 / 64

Section 6

CLIP

Ngonga: Concept Learning in Description Logics 52 / 64

CLIP
Approach

▶ Idea: Prune horizontally by
▶ predicting target concept length and
▶ discarding longer refinements

Ngonga: Concept Learning in Description Logics 53 / 64

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Concept Learning in Description Logics 54 / 64

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C

▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Concept Learning in Description Logics 54 / 64

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C

▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),
for all concepts C and D.

Ngonga: Concept Learning in Description Logics 54 / 64

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Concept Learning in Description Logics 54 / 64

CLIP
Concept Length Prediction

Embedding DNNJohn

Peter, Anna,
Jack

7

▶ Input: positive and negative examples
▶ Output: length of the target concept

Ngonga: Concept Learning in Description Logics 55 / 64

CLIP
Concept Learning

E
m
bedding

DNN
John

Peter, Anna,
Jack

Male hasParent.(hasChild.Female)

C
LIP

Ngonga: Concept Learning in Description Logics 56 / 64

CLIP
Training

0 20 40
Epochs

20

40

60

80

100

A
cc

ur
ac

y

Carcinogenesis

GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis

GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible

GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi

GRU
LSTM
CNN
MLP

0 20 40
Epochs

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Carcinogenesis
GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis
GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible
GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi
GRU
LSTM
CNN
MLP

Ngonga: Concept Learning in Description Logics 57 / 64

CLIP
Validation

0 20 40
Epochs

20

40

60

80

A
cc

ur
ac

y

Carcinogenesis

GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis

GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible
GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi

GRU
LSTM
CNN
MLP

0 20 40
Epochs

1.50

1.75

2.00

2.25

2.50

Lo
ss

Carcinogenesis
GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis
GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible

GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi
GRU
LSTM
CNN
MLP

Ngonga: Concept Learning in Description Logics 58 / 64

CLIP
Network Architecture

Carcinogenesis Mutagenesis

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.89 0.96 0.97 0.80 0.48 0.83 0.97 0.98 0.68 0.33
Val. Acc. 0.76 0.93 0.82 0.77 0.48 0.70 0.82 0.71 0.65 0.35
Test Acc. 0.92 0.95 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33
Test F1 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32

Semantic Bible Vicodi

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28
Val. Acc. 0.49 0.58 0.44 0.46 0.26 0.55 0.77 0.70 0.64 0.30
Test Acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29
Test F1 0.27 0.38 0.20 0.22 0.16 0.45 0.50 0.45 0.38 0.20

Ngonga: Concept Learning in Description Logics 59 / 64

CLIP
Comparison with SOTA

Carcinogenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.78± 0.27 0.89± 0.31 0.58± 0.46 0.99 ± 0.00
F1 ↑ 0.62± 0.46 − 0.51± 0.47 0.96∗ ± 0.10
Runtime (min) ↓ 0.93± 0.94 3.01± 0.72 0.75± 0.07 0.10∗ ± 0.09
Length ↓ 1.69± 0.89 7.81± 6.88 1.04± 0.39 2.00 ± 1.28

Mutagenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.00 0.71± 0.45 0.37± 0.43 0.99 ± 0.00
F1 ↑ 0.81± 0.35 − 0.29± 0.40 0.93∗ ± 0.18
Runtime (min) ↓ 0.70± 0.77 2.39± 0.18 0.29± 0.16 0.07∗ ± 0.05
Length ↓ 2.79± 1.17 12.63± 7.03 1.10± 0.81 2.20 ± 1.16

Semantic Bible

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.02 0.66± 0.47 0.59± 0.37 0.99 ± 0.00
F1 ↑ 0.97± 0.10 − 0.57± 0.38 0.98 ± 0.05
Runtime (min) ↓ 0.47± 0.80 22.15± 96.55 0.09± 0.07 0.06∗ ± 0.05
Length ↓ 3.85± 2.44 9.54± 5.73 1.38± 1.76 2.52∗ ± 1.26

Vicodi

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.29± 0.44 0.25± 0.43 0.28± 0.44 0.99∗ ± 0.00
F1 ↑ 0.25± 0.44 − 0.25± 0.44 0.97∗ ± 0.09
Runtime (min) ↓ 1.30± 0.71 4.78± 1.12 1.81± 0.46 0.16∗ ± 0.12
Length ↓ 10.79± 6.30 11.54± 6.00 11.14± 6.11 1.68∗ ± 0.98

Ngonga: Concept Learning in Description Logics 60 / 64

Section 7

Summary

Ngonga: Concept Learning in Description Logics 61 / 64

Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?

Ngonga: Concept Learning in Description Logics 62 / 64

Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?

Ngonga: Concept Learning in Description Logics 62 / 64

Summary
Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N’Dah
Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif,
Muhammed Saleem, and many more

Thank You!
Questions?

▶ https://dice-research.org
▶ https://twitter.com/DiceResearch
▶ https://twitter.com/NgongaAxel

Ngonga: Concept Learning in Description Logics 63 / 64

https://dice-research.org
https://twitter.com/DiceResearch
https://twitter.com/NgongaAxel

References I

Ngonga: Concept Learning in Description Logics 64 / 64

	Motivation
	Class Expression Learning
	Representing Concepts as SPARQL
	Improving Quality Functions
	Learning with Priming
	CLIP
	Summary

