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Introduction
Data Web

▶ RDF knowledge bases are now first-class citizens of the Web
▶ Approx. 50% of websites contain RDF1

▶ 2+ billion URLs contain RDF statements
▶ Ca. 100 billion statements in Linked Open Data

1See http://webdatacommons.org/structureddata/#results-2022-1
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Introduction
Description Logics

▶ Terminology of RDF datasets in description logics
▶ Popular DLs include ELH (e.g., for biomedical domain),ALC (e.g.,

for ML-driven applications), and SROIQ (e.g., on the Web)
Ngonga: Concept Learning in Description Logics 3 / 64



Motivation
Example

2

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ Neural solution: e(vi) = φ

( ⊕
vj∈Ni

e(vj), e(vi)

)
▶ Pro: Time-efficient
▶ Contra: Unintelligible, does not exploits background knowledge

2Source: https://bit.ly/3sxCj6e
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▶ Solution inALCO: H = {∃ isLocatedIn.{Paris}}
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Motivation
Goal

Goal

▶ Attempt neuro-symbolic learning on knowledge graphs
▶ Exploit time efficiency of neural approaches
▶ Keep explainability of symbolic approaches
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Section 2

Class Expression Learning
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Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from [?])
▶ Given:

▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [?]
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Class Expression Learning
Common Approach

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution
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Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [?]

Example

▶ Let S be the set of all concepts in our language L = ALC
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =



C
NC ∪ ¬NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Concept Learning in Description Logics 10 / 64



Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [?]

Example

▶ Let S be the set of all concepts in our language L = ALC
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =



C
NC ∪ ¬NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Concept Learning in Description Logics 10 / 64



Class Expression Learning
Example

4

▶ E+ = {Louvre,TourEiffel}, E− = {Lily, James}

▶ ρ(⊤) = {Person,Museum,Place,∃is_located_in.⊤, . . .}

4Source: https://bit.ly/3sxCj6e
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

▶ Retrieval is expensive

⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length
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Section 3

Representing Concepts as SPARQL
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Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [?]

Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }
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Representing Concepts as SPARQL
Storage Solutions

▶ Important difference are indexing data structures
▶ Typical indexes include

▶ Resource index, e.g., a hash table
▶ Triple index, e.g., a B+ tree

Ngonga: Concept Learning in Description Logics 15 / 64



Representing Concepts as SPARQL
TENTRIS: Idea

Idea [?]
▶ Exploit tensor representation to accelerate querying
▶ Devise data structure to accommodate rapid querying
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Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V

▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor

▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [?]
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Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u
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Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩
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Representing Concepts as SPARQL
TENTRIS: Hypertrie

▶ Query for any tensor slice efficiently
▶ Allow for efficient querying

1 3 4 5

2 62

3 4 74 5

2

5

6

7

T

T[3, : , : ]

3
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Representing Concepts as SPARQL
TENTRIS: Hypertrie

( : , : , : 〉
1 2 3

41 3 5 2 6 53 4 7
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…
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……
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…

…

▶ Query for any tensor slice efficiently
▶ Storage bound is reduced fromO(d! · d · z(h)) for all collation

orders toO(2d−1 · d · z(h))
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Representing Concepts as SPARQL
TENTRIS: Hypertrie
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▶ Hypertrie topology seems sparse
▶ Compression to improve space, loading and query times [?]

Ngonga: Concept Learning in Description Logics 25 / 64



Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2
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2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes
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nodes Duplicate nodes
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▶ Compress data based on local and global node topology

▶ 3 compression approaches
1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)
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Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

▶ Comparison with state-of-the-art approaches
▶ Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
▶ Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)
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Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie
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▶ Better runtimes on all datasets
▶ Can operate on very large datasets (no time-outs)
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Representing Concepts as SPARQL
TENTRIS: Carcinogenesis

▶ Comparison on supervised machine learning tasks inALC
▶ Better runtimes on all datasets considered
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length
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Section 4

Improving Quality Functions
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Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)
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Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree

▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.
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Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards [?]
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Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D
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Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [?]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i )−Q(s, a; Θi)
)2]
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R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i )−Q(s, a; Θi)
)2]
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Improving Quality Functions
Reinforcement Learning – DRILL

▶ Convolutional deep Q-Network with Θ = [ω,W,H]

φ([s, s′, e+, e−]; Θ) = ReLU
(
vec(ReLU

[
Ψ([s, s′, e+, e−])∗ω

]
)·W
)
·H

Source: [?]
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Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}
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Improving Quality Functions
Quaternions: H

23/11/2022, 21:31 Cayley Q8 quaternion multiplication graph

https://upload.wikimedia.org/wikipedia/commons/0/04/Cayley_Q8_quaternion_multiplication_graph.svg 1/1
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5https://en.wikipedia.org/wiki/Quaternion#/media/File:
Cayley_Q8_quaternion_multiplication_graph.svg
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Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [?]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where

▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions
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Improving Quality Functions
Unsupervised Learning – Training Data

▶ Follow refinement path at random
▶ Select concept C
▶ Set E+ ⊆ R(C) and E− ∩ R(C) = ∅
E+ = {Individuals with a sister }
E− = {Individuals with no sister}

⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Person ⊓ ∀hasSibling.Person . . . Person ⊓ ∃hasSibling.Female
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Improving Quality Functions
Evaluation

▶ Used Family und BioPax datasets
▶ Evaluation on 114 learning problems

Approaches F1 Acc Runtime # Exp.

CELOE .995± 0.03 .993± 0.04 7.5± 1.1 33.5± 129.3
OCEL * 1.00± 0.00 11.0± 1.4 2271.6± 1269.2
ELTL .990± 0.06 .984± 0.09 8.1± 1.6 *
DRILL 1.00± 0.00 1.00± 0.00 1.1± 0.5 9.88± 38.5
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive

⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64



Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64



Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64



Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Concept Learning in Description Logics 43 / 64



Section 5

Learning with Priming
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Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts [?]

Parent Male

married

Female
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Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1

Person 1

Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ ( ∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ ( ∃hasChild.Child))
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Learning with Priming
EVOLEARNER – Data Properties

▶ Given a data property d from the knowledge base K and a set E of
positive and negative examples

▶ We precompute up to k splits of the form d ≤ v̄i per data property
▶ Splits are computed to maximize information gain:

IG(E, v̄i) = H(E)− H(E|v̄i) = H(E)−
(
|EL|
|E|

H(EL) +
|ER|
|E|

H(ER)

)
E

EL ER

p ≤ v̄i p > v̄i
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Learning with Priming
EVOLEARNER – Training

Initialization
create randomly

Selection
select best

Crossover
combine pairs

Mutation
change slightly

0.23
0.15
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Learning with Priming
EVOLEARNER – Evaluation

EvoLearner DL-Learner DL-Learner Aleph SPaCEL
Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.70± 0.12 0.71 ± 0.01 no results 0.46± 0.12 0.60± 0.08
Family 1.00 ± 0.01 0.98± 0.05 1.00 ± 0.00 — 0.97± 0.11
Hepatitis 0.79 ± 0.08 0.61± 0.03 no results 0.38± 0.12 no results
Lymphography 0.84 ± 0.09 0.78± 0.10 0.85 ± 0.10 0.84± 0.09 0.75± 0.13
Mammographic 0.81 ± 0.06 0.64± 0.01 0.78± 0.08 0.48± 0.08 0.64± 0.06
Mutagenesis 1.00 ± 0.00 0.93± 0.14 timeout 0.43± 0.47 1.00 ±0.00
NCTRER 1.00 ± 0.00 0.74± 0.01 0.94± 0.06 0.71± 0.18 1.00 ± 0.00
Premier League 1.00 ± 0.00 0.99± 0.04 0.81± 0.13 0.94± 0.11 0.98± 0.04
Pyrimidine 0.91 ± 0.14 0.84± 0.15 0.84± 0.22 0.90± 0.32 0.86± 0.29
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Learning with Priming
EVOLEARNER – Ablation Study

EvoLearner Without Without Without
Learning Problem (ours) Rand. Walk Init. Data Properties Both

Carcinogenesis 0.70 ± 0.12 0.60 ± 0.21 0.63 ± 0.13 0.62 ± 0.13
Family 1.00 ± 0.01 0.87 ± 0.13 — 0.86 ± 0.14
Hepatitis 0.79 ± 0.08 0.67 ± 0.15 0.46 ± 0.14 0.47 ± 0.13
Lymphography 0.84 ± 0.09 0.83 ± 0.11 — 0.83 ± 0.09
Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.77 ± 0.07 0.75 ± 0.06
Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.48 0.50 ± 0.51
NCTRER 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.75 ± 0.05
Premier League 1.00 ± 0.00 0.98 ± 0.04 0.50 ± 0.23 0.50 ± 0.22
Pyrimidine 0.91 ± 0.14 0.83 ± 0.22 0.67 ± 0.00 0.67 ± 0.00
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length
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Section 6

CLIP
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CLIP
Approach

▶ Idea: Prune horizontally by
▶ predicting target concept length and
▶ discarding longer refinements
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CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.
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CLIP
Concept Length Prediction

Embedding DNNJohn

Peter, Anna,
Jack

7

▶ Input: positive and negative examples
▶ Output: length of the target concept
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CLIP
Concept Learning

E
m
bedding

DNN
John

Peter, Anna,
Jack

Male   hasParent.(  hasChild.Female)

C
LIP
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CLIP
Training
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CLIP
Validation
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CLIP
Network Architecture

Carcinogenesis Mutagenesis

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.89 0.96 0.97 0.80 0.48 0.83 0.97 0.98 0.68 0.33
Val. Acc. 0.76 0.93 0.82 0.77 0.48 0.70 0.82 0.71 0.65 0.35
Test Acc. 0.92 0.95 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33
Test F1 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32

Semantic Bible Vicodi

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28
Val. Acc. 0.49 0.58 0.44 0.46 0.26 0.55 0.77 0.70 0.64 0.30
Test Acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29
Test F1 0.27 0.38 0.20 0.22 0.16 0.45 0.50 0.45 0.38 0.20
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CLIP
Comparison with SOTA

Carcinogenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.78± 0.27 0.89± 0.31 0.58± 0.46 0.99 ± 0.00
F1 ↑ 0.62± 0.46 − 0.51± 0.47 0.96∗ ± 0.10
Runtime (min) ↓ 0.93± 0.94 3.01± 0.72 0.75± 0.07 0.10∗ ± 0.09
Length ↓ 1.69± 0.89 7.81± 6.88 1.04± 0.39 2.00 ± 1.28

Mutagenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.00 0.71± 0.45 0.37± 0.43 0.99 ± 0.00
F1 ↑ 0.81± 0.35 − 0.29± 0.40 0.93∗ ± 0.18
Runtime (min) ↓ 0.70± 0.77 2.39± 0.18 0.29± 0.16 0.07∗ ± 0.05
Length ↓ 2.79± 1.17 12.63± 7.03 1.10± 0.81 2.20 ± 1.16

Semantic Bible

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.02 0.66± 0.47 0.59± 0.37 0.99 ± 0.00
F1 ↑ 0.97± 0.10 − 0.57± 0.38 0.98 ± 0.05
Runtime (min) ↓ 0.47± 0.80 22.15± 96.55 0.09± 0.07 0.06∗ ± 0.05
Length ↓ 3.85± 2.44 9.54± 5.73 1.38± 1.76 2.52∗ ± 1.26

Vicodi

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.29± 0.44 0.25± 0.43 0.28± 0.44 0.99∗ ± 0.00
F1 ↑ 0.25± 0.44 − 0.25± 0.44 0.97∗ ± 0.09
Runtime (min) ↓ 1.30± 0.71 4.78± 1.12 1.81± 0.46 0.16∗ ± 0.12
Length ↓ 10.79± 6.30 11.54± 6.00 11.14± 6.11 1.68∗ ± 0.98
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Section 7

Summary
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Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?
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Summary
Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N’Dah
Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif,
Muhammed Saleem, and many more

Thank You!
Questions?

▶ https://dice-research.org
▶ https://twitter.com/DiceResearch
▶ https://twitter.com/NgongaAxel
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