
KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

Concept Learning in
Description Logics — Part 3:

Exact and PAC Learning

2

developed in 1987 by Dana Angluin in the context of learning finite automata

our assumption: logic and domain expertise are not in the same hands

Exact Learning

logic expert  
“Learner”

domain expert

“Teacher”

asks questions

answers faithfully,  
but not informative

Learner and Teacher agree on ontology 𝒪

target query qT

(unary) CQ,  
-concept,  

-concept,…
ℰℒ
ℰℒℐ

Question: Does Learner have a strategy to efficiently identify ? qT

Questions

3

Membership query

Equivalence query

Is an answer to on ?

(𝒟, a)
a qT(x) (𝒪, 𝒟)

yes/no

qT

qT
Is equivalent to under ?qH qT 𝒪

yes done

no counterexample

⇒
⇒ (𝒟, a)

Example

4

Ontology 𝒪 = { Fish ⊑ Animal, Dog ⊑ Mammal, Mammal ⊑ Animal }
Animal(x)Is an answer to in f qT(x) (𝒪, {Fish(f)})

yes!

Is equivalent to ?Fish(x) qT(x)

no + counterexample ({Dog(a)}, a)

Is equivalent to ?Animal(x) qT(x)

yes!

What is known?

5

query class
-concepts

-concepts

CQ

CQ/ -concepts

CQ

-concepts

ℰℒ/ℰℒℐ
ℰℒ

ℰℒℐ
ℰℒℐ

ontology
no

no

DL-Lite/

ℰℒ
ℰℒℐ

ℰℒ
ℰℒ

questions
MQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

learnability
efficient

efficient

efficient

not efficient

open
open

today
 ⇐

⇐

Efficient Learnability

=

learning strategy is guaranteed to identify target in time polynomial in

signature, ontology, target, largest counterexample

Sources
ten Cate, Dalmau, & Kolaitis, ToDS, 2013

ten Cate & Dalmau, ToDS, 2022

Funk, Jung, & Lutz, IJCAI, 2021/2022

Learning Strategy

6

All known learning algorithms follow a general scheme: they construct

Start : very strong query that is guaranteed to entail

Step : two different strategies for weakening

 a) based on frontiers minimal weakenings of

 b) based on incorporation of counterexample (usually via product)

Key ingredient Using MQs, we can (syntactically) minimize the

Lemma Sequence as above with all minimal is bounded by

 a polynomial in signature, ontology, and target

q0 ⊊𝒪 q1 ⊊𝒪 … ⊊𝒪 qn = qT

q0 qT

qi → qi+1 qi
≈ qi

qi

q0, …, qn qi

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes

: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one

running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD?

Generalize C and checkD ⊑ CT

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT
Delete ∃r.A

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT
Delete ∃r.A Delete A

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT
Delete ∃r.A Delete A Split (∃s.B ⊓ ∃r.A)

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT
Delete ∃r.A Delete A Split (∃s.B ⊓ ∃r.A)

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r

Learning EL-Concepts Frontiers

We need to check all possible generalizations of C

Definition (Frontier ofC)
A set of concepts F is a frontier of C if
1. C ⊑ D andD ̸⊑ C for allD ∈ F

2. for every conceptD ′ with C ⊑ D ′ andD ′ ̸⊑ C, there is aD ∈ F such thatD ⊑ D ′.

Theorem (ten Cate andDalmau 2021/Kriegel 2018)
Let C be anEL-concept. Then a frontier of C can be computed in polynomial time (in |C|)

Long chains:

a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1,A2

a ′2
A1,A3

r r
a1

a2
A2

a ′2
A1,A3

r r

Learning EL-Concepts Frontiers

We need to check all possible generalizations of C

Definition (Frontier ofC)
A set of concepts F is a frontier of C if
1. C ⊑ D andD ̸⊑ C for allD ∈ F

2. for every conceptD ′ with C ⊑ D ′ andD ′ ̸⊑ C, there is aD ∈ F such thatD ⊑ D ′.

Theorem (ten Cate andDalmau 2021/Kriegel 2018)
Let C be anEL-concept. Then a frontier of C can be computed in polynomial time (in |C|)

Long chains:

a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1,A2

a ′2
A1,A3

r r
a1

a2
A2

a ′2
A1,A3

r r

Learning EL-Concepts Frontiers

We need to check all possible generalizations of C

Definition (Frontier ofC)
A set of concepts F is a frontier of C if
1. C ⊑ D andD ̸⊑ C for allD ∈ F

2. for every conceptD ′ with C ⊑ D ′ andD ′ ̸⊑ C, there is aD ∈ F such thatD ⊑ D ′.

Theorem (ten Cate andDalmau 2021/Kriegel 2018)
Let C be anEL-concept. Then a frontier of C can be computed in polynomial time (in |C|)

Long chains:

a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1,A2

a ′2
A1,A3

r r
a1

a2
A2

a ′2
A1,A3

r r

Learning EL-Concepts Frontiers

We need to check all possible generalizations of C

Definition (Frontier ofC)
A set of concepts F is a frontier of C if
1. C ⊑ D andD ̸⊑ C for allD ∈ F

2. for every conceptD ′ with C ⊑ D ′ andD ′ ̸⊑ C, there is aD ∈ F such thatD ⊑ D ′.

Theorem (ten Cate andDalmau 2021/Kriegel 2018)
Let C be anEL-concept. Then a frontier of C can be computed in polynomial time (in |C|)

Long chains:

a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1,A2

a ′2
A1,A3

r r
a1

a2
A2

a ′2
A1,A3

r r

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C minimize(C) CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a ′2
A1,A3

r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary

C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C minimize(C) CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a ′2
A1,A3

r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C minimize(C) CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a ′2
A1,A3

r
a1

a2
A1

r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)

Learning EL-Concepts Putting it all together

Input An EL-concept C0 such that C0 ⊑ CT
Output An EL-concept CH such that CH ≡ CT

CH := C0
while there is aD in the frontier of CH withD ⊑ CT do

CH := minimize(D)
end while
return CH

Theorem (ten Cate andDalmau 2021)
EL-concepts are polynomial time learnable using only membership queries (under the empty ontology)

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1) Double cycle C CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

r
a1

A1,A2,A3

a2
A1,A2,A3

r
a1

a2
A1,A2,A3

r

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1)

Double cycle C

CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

r
a1

A1,A2,A3

a2
A1,A2,A3

r

a1

a2
A1,A2,A3

r

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1)

Double cycle C

CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

r
a1

A1,A2,A3

a2
A1,A2,A3

r

a1

a2
A1,A2,A3

r

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1) Double cycle

C

CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

rr

a1
A1,A2,A3

a2
A1,A2,A3

r

a1

a2
A1,A2,A3

r

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1) Double cycle

C

CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

rr

a1
A1,A2,A3

a2
A1,A2,A3

r

a1

a2
A1,A2,A3

r

Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
extract an EL-concept C such thatD |= C(a) and C ⊑ CT

(D, a1) Double cycle C CT

a1
A1,A2,A3

r

a1
A1,A2,A3

a2
A1,A2,A3

rr
a1

A1,A2,A3

a2
A1,A2,A3

r
a1

a2
A1,A2,A3

r

Learning EL-Concepts Remarks

• More expressive concepts
Also works for ELI-concepts (ELwith inverses) and “c-acyclic” conjunctive queries (ten
Cate and Dalmau 2022)

• Non-empty ontologies
Also works under some lightweight ontology languages likeDL-Litecore (F., Jung, Lutz
2022)
Frontiers w.r.t.DL-Litecore ontologies can be computed in polynomial time

• Disjointness constraints
If the ontology contains disjointness constraints like A⊓ B ⊑ ⊥ then obtaining the initial
concept becomes more complicated

• Practicality
asks a lot of membership queries

Learning EL-Concepts Remarks

• More expressive concepts
Also works for ELI-concepts (ELwith inverses) and “c-acyclic” conjunctive queries (ten
Cate and Dalmau 2022)

• Non-empty ontologies
Also works under some lightweight ontology languages likeDL-Litecore (F., Jung, Lutz
2022)
Frontiers w.r.t.DL-Litecore ontologies can be computed in polynomial time

• Disjointness constraints
If the ontology contains disjointness constraints like A⊓ B ⊑ ⊥ then obtaining the initial
concept becomes more complicated

• Practicality
asks a lot of membership queries

Learning EL-Concepts Remarks

• More expressive concepts
Also works for ELI-concepts (ELwith inverses) and “c-acyclic” conjunctive queries (ten
Cate and Dalmau 2022)

• Non-empty ontologies
Also works under some lightweight ontology languages likeDL-Litecore (F., Jung, Lutz
2022)
Frontiers w.r.t.DL-Litecore ontologies can be computed in polynomial time

• Disjointness constraints
If the ontology contains disjointness constraints like A⊓ B ⊑ ⊥ then obtaining the initial
concept becomes more complicated

• Practicality
asks a lot of membership queries

Learning EL-Concepts Remarks

• More expressive concepts
Also works for ELI-concepts (ELwith inverses) and “c-acyclic” conjunctive queries (ten
Cate and Dalmau 2022)

• Non-empty ontologies
Also works under some lightweight ontology languages likeDL-Litecore (F., Jung, Lutz
2022)
Frontiers w.r.t.DL-Litecore ontologies can be computed in polynomial time

• Disjointness constraints
If the ontology contains disjointness constraints like A⊓ B ⊑ ⊥ then obtaining the initial
concept becomes more complicated

• Practicality
asks a lot of membership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries

Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples

Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples

Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples

Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples

Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×

CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×

CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×

CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×
CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×

CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a) =⇒ direct product×
CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a) =⇒ direct product×
CH (D, b1) CH × (D, b1)
a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B (a4, b1)

r

r

Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or (Not possible if we ensure thatO |= CH ⊑ CT)

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a) =⇒ direct product×
CH (D, b1) CH × (D, b1)
a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r

r

Learning EL-Concepts under Ontologies Algorithm, first try

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := CH × (D, a)
CH := minimize(C ′

H)
end while
return CH

For a counterexample (D, a)with

1. CH ⊑ CT andD |= CT(a)

2. D ̸|= CH(a),

it follows that CH ⊑ CH × (D, a) ⊑ CT and CH × (D, a) ̸⊑ CH

Learning EL-Concepts under Ontologies Algorithm, first try

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := CH × (D, a)
CH := minimize(C ′

H)
end while
return CH

For a counterexample (D, a)with

1. CH ⊑ CT andD |= CT(a)

2. D ̸|= CH(a),

it follows that CH ⊑ CH × (D, a) ⊑ CT

and CH × (D, a) ̸⊑ CH

Learning EL-Concepts under Ontologies Algorithm, first try

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := CH × (D, a)
CH := minimize(C ′

H)
end while
return CH

For a counterexample (D, a)with

1. CH ⊑ CT andD |= CT(a)

2. D ̸|= CH(a),

it follows that CH ⊑ CH × (D, a) ⊑ CT and CH × (D, a) ̸⊑ CH

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT.

Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)

Learning EL-Concepts under Ontologies Algorithmwith CompactModel

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := GCH,O × GD,O
CH := minimize(C ′

H)
end while
return CH

Theorem (F., Jung, Lutz 2021)
EL-concepts are polynomial time learnable underEL-ontologies

Learning EL-Concepts under Ontologies Algorithmwith CompactModel

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := extract-el(GCH,O × GD,O)
CH := minimize(C ′

H)
end while
return CH

Theorem (F., Jung, Lutz 2021)
EL-concepts are polynomial time learnable underEL-ontologies

Learning EL-Concepts under Ontologies Algorithmwith CompactModel

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := extract-el(GCH,O × GD,O)
CH := minimize(C ′

H)
end while
return CH

Theorem (F., Jung, Lutz 2021)
EL-concepts are polynomial time learnable underEL-ontologies

Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)
Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies

Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)
Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies

Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)

Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies

Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)
Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies

Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)
Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies

References
[FJL21] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “Actively Learning

Concepts and Conjunctive Queries under ELr-Ontologies”. In: Proc. of IJCAI.
2021.

[FJL22a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “Exact Learning of ELI
Queries in the Presence of DL-Lite-Horn Ontologies”. In: Proc. of DL. 2022.

[FJL22b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. “Frontiers and Exact
Learning of ELIQueries under DL-Lite Ontologies”. In: Proc. of IJCAI. 2022.

[Kri18] Francesco Kriegel. “The Distributive, Graded Lattice of EL Concept Descriptions
and Its Neighborhood Relation”. In: Proc. of CLA. Vol. 2123. 2018, pp. 267–278.

[tD21] Balder ten Cate and Victor Dalmau. “Conjunctive Queries: Unique
Characterizations and Exact Learnability”. In: Proc. of ICDT. Vol. 186. LIPIcs.
2021, 9:1–9:24.

[tDK13] Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. “Learning schema
mappings”. In: ACMTrans. Database Syst. 38.4 (2013), 28:1–28:31. doi:
10.1145/2539032.2539035.

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

PAC Learning

PAC Learning — Motivation

9

So far concentrated on fitting/separability problem:

 given positive/negative examples, find a concept/query that fits

Neglected the aspect of generalization
 we want the fitting concept to generalize well to unseen examples

Leslie Valiant introduced PAC learning in a seminal paper in 1984

Notion of PAC (probably — approximately — correct) tries to capture generalization

Plan

1. Definition

2. Boundaries

3. Occams Razor & Bounded Fitting

4. SPELL demo

Statistical Machine Learning

10

unknown probability  
distribution D

draw examples i.i.d.

e1, …, en

label with unknown

function f*

(e1, f*(e1)), …, (en, f*(en))

learning algorithm A

hypothesis for h f*

Papayas on some unknown island

random papayas P1, …, Pn

(P1, +), …, (Pn, −)

 = “nature” labels with
“tasty” (+) or “not tasty (-)
f*

rule predicting tastyness e.g.:

“if papaya is yellow and has size 10-13 cm

and is not too soft, then it’s tasty”

Statistical Machine Learning

11

unknown probability  
distribution D

draw examples i.i.d.

e1, …, en

label with unknown

function f*

(e1, f*(e1)), …, (en, f*(en))

learning algorithm A

hypothesis for h f*

No access to all examples two kinds of errors
- approximates approximation parameter

- A works only probably confidence parameter

⇒
h f* ⇒ ϵ

⇒ δ

PAC learnability
Class is PAC learnable if there are (A,) s.t.:

- A is learning algorithm

- if given examples labeled by of size ,  

A outputs with high probability  
a hypothesis with small error

Q mQ

mQ(ϵ, δ, n) q n
≥ 1 − δ

h ∈ Q ≤ ϵ
errorD, f*(h) = Pre∼D(f*(e) ≠ h(e))

No Papayas today

Examples = databases, = class of queriesQ

PAC Learnability

12

PAC learnability
Class is PAC learnable if there are (A,) s.t.:

- A is learning algorithm

- if given examples labeled by of size ,  

A outputs with high probability  
a hypothesis with small error

Q mQ

mQ(ϵ, δ, n) q n
≥ 1 − δ

h ∈ Q ≤ ϵ

Theorem Every class of queries is PAC learnable.

Proof Every class of queries is union

 where is the size -fragment of

 Each is finite and any countable union of finite classes is PAC-learnable

Q ⊆ FO

Q = Q1 ∪ Q2 ∪ Q3 ∪ …
Qi (i) Q

Qi

Two notions of Efficiency:
a) polynomial time efficient PAC learning

b) polynomial in , , sample-efficient PAC learning

⇒
mQ n 1/ε 1/δ ⇒

Known:
a) b)⇒

Failure of Efficient PAC

13

 has polynomial size fitting property if
 whenever a fitting query exists, there exists one of size polynomial in

 has polynomial time evaluation property if
 there is a polynomial time algorithm

Q
E+, E−

Q

Theorem (Pitt & Valiant, J. ACM 1984)
Let be polynomial time evaluable and have the polynomial size fitting property.
Then: If is efficiently PAC learnable, then the fitting problem for is in RP.

Q
Q Q

Consequence Any class CQs containing all Path Queries is not

 efficiently PAC learnable (unless NP=RP).

Proof Assume is efficiently PAC learnable

 is also PAC learnable over the instances from the NP-hardness proof

 1) Over these instances we have polynomial size fitting property

 2) Instances are tree-shaped polynomial time evaluation

 Apply Pitt & Valiant.

Q ⊆

Q
Q

⇒

[ten Cate, Funk, J, Lutz 2023]

Efficient PAC with Membership Queries

14

Tight relation between Exact Learnability and PAC Learnability

Efficient exact learnability with EQ Efficient PAC learnability

(very often, converse also true)

Efficient exact learnability with EQ+MQ Efficient PAC learnability with MQs

⇒

⇒

query class
-concepts

-concepts

CQ

CQ/ -concepts

CQ

-concepts

ℰℒ/ℰℒℐ
ℰℒ

ℰℒℐ
ℰℒℐ

ontology
no

no

DL-Lite/

ℰℒ
ℰℒℐ

ℰℒ
ℰℒ

questions
MQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

learnability
efficient

efficient

efficient

not efficient

open
open

Transfer results

Sample Efficiency of Product Algorithm

15

Recall the „product algorithm“ for :

Given concepts and :

1. compute product concept

2. if for all , return

3. otherwise return „no fitting concept“

Product algorithm returns always the most specific fitting concept

ℰℒ
C1, …, Cn D1, …, Dk

C := C1 × … × Cn
Di ⋢ C i C

Bad News Any fitting algorithm that returns a most specific fitting concept (if it exists),

 is not sample-efficient! [ten Cate, Funk, J, Lutz IJCAI’23]

So the „natural“ algorithm does not enjoy generalization abilities

Same holds for algorithms that

a) return the most general fitting concept

b) return the fitting concept with minimal quantifier depth

Occam’s Razor (William of Ockham, 14th century)

16

„The simplest explanation is usually the best one“

Original formulation "Entities must not be multiplied beyond necessity“
(„multiplied“ is here in the sense of „combined“)

Computational Learning Theory has poured this intuition into the following definition

Learning algorithm A is an Occam algorithm if there are a polynomial and

such that A outputs a concept of size , where is the size of the target and

 is the number of examples.

p α ∈ (0,1)
p(s) ⋅ mα s

m

Theorem Every Occam algorithm A is a sample-efficient PAC learning algorithm.

 [Blumer, Ehrenfeucht, Haussler, & Warmuth J. ACM 1989]

 Occam algorithms are one way to obtain sample-efficient PAC learning algorithms.

(For many hypothesis classes, a converse of this is also true)

⇒

Bounded Fitting

17

Input: Ontology , examples

Bounded Fitting proceeds in rounds:

Round 1: search for a fitting concept of size 1

Round 2: search for a fitting concept of size 2

Round : search for a fitting concept of size

Return the first fitting concept that is found in this way

𝒪 E+, E−

⋮
i i
⋮

[ten Cate, Funk, J, Lutz IJCAI’23]

Similarity with Bounded Model Checking [Biere, Cimatti, Clarke, Zhu TACAS 1999]

Bounded fitting is Occam Algorithm (independent of ontology/query language)

 sample efficient with complexity:

Flexibility - different size measures work
- different sequences such as 1, 2, 4, 8, … work

O(1
ε

⋅ log 1
ε

⋅ 1
δ

⋅ log |Σ | ⋅ | |qT | |)

SPELL: Bounded Fitting for ℰℒ

18

Observation Problem in

 Round : search for a fitting concept of size

is NP-complete for ontology and query language

Our system SPELL (https://github.com/spell-system/SPELL)

implements Bounded Fitting for leveraging a SAT solver

 Talk tomorrow @DL with more information and detailed benchmarks

i i

ℰℒ

⇒
ℰℒ

⇒

SPELL Demo

