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Concept Learning in 
Description Logics — Part 3: 

Exact and PAC Learning
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developed in 1987 by Dana Angluin in the context of learning finite automata


our assumption: logic and domain expertise are not in the same hands

Exact Learning

logic expert  
“Learner”

domain expert

“Teacher”

asks questions

answers faithfully,  
but not informative

Learner and Teacher agree on ontology 𝒪

target query qT

(unary) CQ,  
-concept,  

-concept,…
ℰℒ
ℰℒℐ

Question:    Does Learner have a strategy to efficiently identify ?   qT



Questions
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Membership query 


Equivalence query



Is  an answer to  on ?

(𝒟, a)
a qT(x) (𝒪, 𝒟)

yes/no

qT

qT
Is  equivalent to  under ?qH qT 𝒪

yes  done

no  counterexample 

⇒
⇒ (𝒟, a)



Example
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Ontology 𝒪 = { Fish ⊑ Animal, Dog ⊑ Mammal, Mammal ⊑ Animal }
Animal(x)Is  an answer to  in f qT(x) (𝒪, {Fish( f )})

yes!

Is  equivalent to ?Fish(x) qT(x)

no + counterexample ({Dog(a)}, a)

Is  equivalent to ?Animal(x) qT(x)

yes!



What is known?
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query class                                                          
-concepts                                                  


-concepts                             

CQ                                                           

CQ/ -concepts

CQ


-concepts

ℰℒ/ℰℒℐ
ℰℒ

ℰℒℐ
ℰℒℐ

ontology 
no




no




DL-Lite/ 


ℰℒ
ℰℒℐ

ℰℒ
ℰℒ

questions 
MQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

learnability 
efficient

efficient

efficient

not efficient

open 
open

today 
 ⇐

⇐

Efficient Learnability 

= 

learning strategy is guaranteed to identify target in time polynomial in

signature, ontology, target, largest counterexample

Sources 
ten Cate, Dalmau, & Kolaitis, ToDS, 2013

ten Cate & Dalmau, ToDS, 2022

Funk, Jung, & Lutz, IJCAI, 2021/2022



Learning Strategy
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All known learning algorithms follow a general scheme: they construct





Start :              very strong query that is guaranteed to entail 


Step :   two different strategies for weakening 

                           a) based on frontiers  minimal weakenings of 

                           b) based on incorporation of counterexample (usually via product)


Key ingredient      Using MQs, we can (syntactically) minimize the 


Lemma      Sequence  as above with all  minimal is bounded by 

                  a polynomial in signature, ontology, and target

q0 ⊊𝒪 q1 ⊊𝒪 … ⊊𝒪 qn = qT

q0 qT

qi → qi+1 qi
≈ qi

qi

q0, …, qn qi



Learning EL-Concepts under Ontologies Setup

Exact learning of concepts:

• Teacher knows target DL concept CT and answers membership and equivalence queries

• Learner knows DL ontologyO and signature Σ of CT.

Learnability:
Is there an algorithm that the learner can execute to always identify CT?

Yes: enumerate all concepts by size and ask equivalence query for each one
running time exponential in |CT |

Is there a polynomial time learning algorithm?
(polynomial in the size of CT,O, Σ and largest counterexample)?

We will look at the polynomial time learnability of EL-concepts under ontologies.
First step: empty ontology (O = ∅)
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Learning EL-Concepts Idea 1: Checking Subsumption

How can we use membership queries to identify CT?

Every EL-concept C can be represented in a natural way as a data instance (DC, aC)

C = A ⊓ ∃r.(∃s.B ⊓ ∃r.A) =⇒

aC A

a∃s.B⊓∃r.A

aB B aA A

r

s r

For all EL-concepts C1,C2: C1 ⊑ C2 if and only ifDC1 |= C2(aC2)

Especially: C ⊑ CT if and only ifDC |= CT(aC)

If the response to the membership queryDC |= CT(aC) is “Yes”, then C ⊑ CT.

We can use a membership query to test C ⊑ CT
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Learning EL-Concepts Idea 2: Approaching CT from below

If there is a concept C such that
C ⊑ CT and CT ̸⊑ C,

then there must be a conceptD such that
D ⊑ CT, C ⊑ D, andD ̸⊑ C

Any suchDmoves us closer to CT (decreases number of possibilites for CT)

How can we construct such aD? Generalize C and checkD ⊑ CT

a1 A

a2

a3 B a4 A

r

s r

a1 A

a2

a3 B

r

s

a1

a2

a3 B aA A

r

s r

a1 A

a2 a ′2

a3 B a4 A

r r

s r
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Learning EL-Concepts Frontiers

We need to check all possible generalizations of C

Definition (Frontier ofC)
A set of concepts F is a frontier of C if
1. C ⊑ D andD ̸⊑ C for allD ∈ F

2. for every conceptD ′ with C ⊑ D ′ andD ′ ̸⊑ C, there is aD ∈ F such thatD ⊑ D ′.

Theorem (ten Cate andDalmau 2021/Kriegel 2018)
Let C be anEL-concept. Then a frontier of C can be computed in polynomial time (in |C|)

Long chains:

a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r
a1

a2
A1,A2

a ′2
A1,A3

r r
a1

a2
A2

a ′2
A1,A3

r r
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Learning EL-Concepts Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

C

minimize(C)

CT
a1

a2
A1,A2,A3

r
a1

a2
A1,A2

a ′2
A1,A3

a ′′2
A2,A3

r r r

Only small part of C needed for C ⊑ CT (⩽ |CT |)

minimize(C): for each existential restriction, remove if it is unecessary
C ⊑ minimize(C) ⊑ CT and |minimize(C)| ⩽ |CT

Lemma
A sequence of minimized concepts that approaches CT has at most polynomial length (in |CT |)
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Learning EL-Concepts Putting it all together

Input An EL-concept C0 such that C0 ⊑ CT
Output An EL-concept CH such that CH ≡ CT

CH := C0
while there is aD in the frontier of CH withD ⊑ CT do

CH := minimize(D)
end while
return CH

Theorem (ten Cate andDalmau 2021)
EL-concepts are polynomial time learnable using only membership queries (under the empty ontology)



Learning EL-Concepts Idea 4: Initial Concept

How can we obtain the input C0? (with C0 ⊑ CT)

For a given Σ, there is (D, a) such thatD |= CT(a) for all CT over Σ

Repeatedly double cycles andminimize (membership queries) to obtain Cwith C ⊑ CT

extract-el: from a data instance (D, a)withD |= CT(a),
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Learning EL-Concepts Remarks

• More expressive concepts
Also works for ELI-concepts (ELwith inverses) and “c-acyclic” conjunctive queries (ten
Cate and Dalmau 2022)

• Non-empty ontologies
Also works under some lightweight ontology languages likeDL-Litecore (F., Jung, Lutz
2022)
Frontiers w.r.t.DL-Litecore ontologies can be computed in polynomial time

• Disjointness constraints
If the ontology contains disjointness constraints like A⊓ B ⊑ ⊥ then obtaining the initial
concept becomes more complicated

• Practicality
asks a lot of membership queries
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Learning EL-Concepts under Ontologies Non-empty EL-ontologies

Nowwemove on to learning EL-concepts under EL-ontologies.

Howmany of our idea do still work?

• Testing subsumption with membership queries works
O, DC |= CT(aC) if and only ifO |= C ⊑ CT

• Minimization works

• extract-el works

• Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
EL-concepts are not polynomial time learnable underEL-ontologies using onlymembership queries
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Learning EL-Concepts under Ontologies Using onlymembership queries

Consider an EL ontologyOwith the CIs:

Ai ⊓ Bi ⊑ A1 ⊓ B1 ⊓ · · · ⊓ An ⊓ Bn for 1 ⩽ i ⩽ n

and the set of concepts S = {α1 ⊓ · · · ⊓ αn | αi ∈ {Ai,Bi}}

CT ∈ S is hard to identify:

IfO, D |= C1(a) andO, D |= C2(a) for C1,C2 ∈ Swith C1 ̸= C2,
thenO, D |= C(a) for all C ∈ S

Worst case: learning algorithm needs |S| = 2nmembership queries to identify CT in S

Learning algorithm for EL-ontologies must use equivalence queries and counterexamples
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Learning EL-Concepts under Ontologies Counter examples and Products

Learner asks equivalence query with hypothesis CH

IfO ̸|= CH ̸≡ CT, then teacher returns counter example (D, a) such that

• O, D |= CH(a) andO, D ̸|= CT(a), or

• O, D ̸|= CH(a) andO, D |= CT(a).

Need: generalize CH such thatO, D |= CH(a)

=⇒ direct product×

CH (D, b1)

CH × (D, b1)

a1 A

a2

a3 B a4 A

r

s r

b1 B

r

(a1, b1)

(a2, b1)

(a3, b1) B

(a4, b1)

r
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Learning EL-Concepts under Ontologies Algorithm, first try

Input An EL-ontologyO and an EL-concept C0 such thatO |= C0 ⊑ CT
Output An EL-concept CH such thatO |= CH ≡ CT

CH := C0
while the equivalence queryO |= CH ≡ CT returns a counterexample (D, a) do

C ′
H := CH × (D, a)
CH := minimize(C ′

H)
end while
return CH

For a counterexample (D, a)with

1. CH ⊑ CT andD |= CT(a)

2. D ̸|= CH(a),

it follows that CH ⊑ CH × (D, a) ⊑ CT and CH × (D, a) ̸⊑ CH
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Learning EL-Concepts under Ontologies CompactModels

CH × (D, a) does not work under EL-ontologies. LetO = {A ⊑ ∃r.⊤, B ⊑ ∃r.⊤}

CH (D, a) CH × (D, a) CT
a1 A

a2
r

a2
r

b1 B

b2
r

b2
r

(a1, b1)

(a2, b2)
r

(a2, b2)
r

a1

a2
r

O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)
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O |= CH ⊑ CT andO, D |= CT(b1), butO ̸|= CH × (D, a) ⊑ CT. Need to include
consequences ofO

In EL there can be infinite consequences (A ⊑ ∃r.A)

Fortunately, for EL there are compact universal models GCH,O of ontologies (with size
polynomial in |CH| and |O|)
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C ′
H := GCH,O × GD,O
CH := minimize(C ′
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Theorem (F., Jung, Lutz 2021)
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Learning EL-Concepts under Ontologies Remarks

• Conjunctive Queries
×-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

• More expressive concepts
Also works for “symmetry-free” ELI-concepts and “symmetry-free, chordal”
ELI-concepts (under EL-ontologies, compact models exist) (F., Jung, Lutz 2021)

• More expressive ontology languages
A similar approach works forDL-Litehorn-ontologies (F., Jung, Lutz 2022)
Does not work for ELI-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
EL-Concepts are not polynomal time learnable underELI-ontologies
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PAC Learning — Motivation

9

So far concentrated on fitting/separability problem: 

   given positive/negative examples, find a concept/query that fits 


Neglected the aspect of generalization 
   we want the fitting concept to generalize well to unseen examples 

Leslie Valiant introduced PAC learning in a seminal paper in 1984 


Notion of PAC (probably — approximately — correct) tries to capture generalization


Plan

1. Definition

2. Boundaries

3. Occams Razor & Bounded Fitting

4. SPELL demo



Statistical Machine Learning
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unknown probability  
distribution D

draw examples i.i.d.

e1, …, en

label with unknown

function f*

(e1, f*(e1)), …, (en, f*(en))

learning algorithm A

hypothesis  for h f*

Papayas on some unknown island

random papayas P1, …, Pn

(P1, + ), …, (Pn, − )

 = “nature” labels with  
“tasty” (+) or “not tasty (-)
f*

rule predicting tastyness e.g.:


“if papaya is yellow and has size 10-13 cm 

and is not too soft, then it’s tasty”



Statistical Machine Learning
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unknown probability  
distribution D

draw examples i.i.d.

e1, …, en

label with unknown

function f*

(e1, f*(e1)), …, (en, f*(en))

learning algorithm A

hypothesis  for h f*

No access to all examples  two kinds of errors 
-  approximates        approximation parameter 

- A works only probably      confidence parameter 

⇒
h f* ⇒ ϵ

⇒ δ

PAC learnability 
Class  is PAC learnable if there are (A, ) s.t.:

- A is learning algorithm

- if given  examples labeled by  of size ,  

A outputs with high probability   
a hypothesis  with small error  

Q mQ

mQ(ϵ, δ, n) q n
≥ 1 − δ

h ∈ Q ≤ ϵ
errorD, f*(h) = Pre∼D( f*(e) ≠ h(e))

No Papayas today    

Examples = databases,  = class of queriesQ



PAC Learnability
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PAC learnability 
Class  is PAC learnable if there are (A, ) s.t.:

- A is learning algorithm

- if given  examples labeled by  of size ,  

A outputs with high probability   
a hypothesis  with small error  

Q mQ

mQ(ϵ, δ, n) q n
≥ 1 − δ

h ∈ Q ≤ ϵ

Theorem  Every class of queries  is PAC learnable.


Proof        Every class of queries is union  

                 where  is the size -fragment of 


                 Each  is finite and any countable union of finite classes is PAC-learnable


Q ⊆ FO

Q = Q1 ∪ Q2 ∪ Q3 ∪ …
Qi (i) Q

Qi

Two notions of Efficiency:  
a) polynomial time                           efficient PAC learning

b)  polynomial in , ,          sample-efficient PAC learning

⇒
mQ n 1/ε 1/δ ⇒

Known: 
a)  b)⇒



Failure of Efficient PAC
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 has polynomial size fitting property if 
   whenever a fitting query exists, there exists one of size polynomial in  

 has polynomial time evaluation property if 
   there is a polynomial time algorithm

Q
E+, E−

Q

Theorem (Pitt & Valiant, J. ACM 1984) 
Let  be polynomial time evaluable and have the polynomial size fitting property.  
Then: If  is efficiently PAC learnable, then the fitting problem for  is in RP.

Q
Q Q

Consequence     Any class CQs containing all Path Queries is not 

                            efficiently PAC learnable (unless NP=RP).


Proof   Assume  is efficiently PAC learnable

             is also PAC learnable over the instances from the NP-hardness proof

            1) Over these instances we have polynomial size fitting property

            2) Instances are tree-shaped  polynomial time evaluation

            Apply Pitt & Valiant. 

Q ⊆

Q
Q

⇒

[ten Cate, Funk, J, Lutz 2023]



Efficient PAC with Membership Queries
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Tight relation between Exact Learnability and PAC Learnability


Efficient exact learnability with EQ                  Efficient PAC learnability

(very often, converse also true)


Efficient exact learnability with EQ+MQ          Efficient PAC learnability with MQs 

⇒

⇒

query class                                                          
-concepts                                                  


-concepts                             

CQ                                                           

CQ/ -concepts

CQ


-concepts

ℰℒ/ℰℒℐ
ℰℒ

ℰℒℐ
ℰℒℐ

ontology 
no




no




DL-Lite/ 


ℰℒ
ℰℒℐ

ℰℒ
ℰℒ

questions 
MQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

MQ+EQ

learnability 
efficient

efficient

efficient

not efficient

open 
open

Transfer results



Sample Efficiency of Product Algorithm
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Recall the „product algorithm“ for :


Given concepts  and : 

1. compute product concept  

2. if  for all , return 

3. otherwise return „no fitting concept“


Product algorithm returns always the most specific fitting concept

ℰℒ
C1, …, Cn D1, …, Dk

C := C1 × … × Cn
Di ⋢ C i C

Bad News   Any fitting algorithm that returns a most specific fitting concept (if it exists), 

                    is not sample-efficient!                             [ten Cate, Funk, J, Lutz IJCAI’23]


So the „natural“ algorithm does not enjoy generalization abilities


Same holds for algorithms that 

a) return the most general fitting concept

b) return the fitting concept with minimal quantifier depth



Occam’s Razor (William of Ockham, 14th century)
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„The simplest explanation is usually the best one“

Original formulation   "Entities must not be multiplied beyond necessity“
(„multiplied“ is here in the sense of „combined“)

Computational Learning Theory has poured this intuition into the following definition


Learning algorithm A is an Occam algorithm if there are a polynomial  and 

such that A outputs a concept of size , where  is the size of the target and


 is the number of examples.

p α ∈ (0,1)
p(s) ⋅ mα s

m

Theorem    Every Occam algorithm A is a sample-efficient PAC learning algorithm. 

                                                [Blumer, Ehrenfeucht, Haussler, & Warmuth J. ACM 1989] 

 Occam algorithms are one way to obtain sample-efficient PAC learning algorithms.


(For many hypothesis classes, a converse of this is also true)

⇒



Bounded Fitting
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Input:     Ontology , examples 


Bounded Fitting proceeds in rounds:


Round 1: search for a fitting concept of size 1

Round 2: search for a fitting concept of size 2

           

Round :  search for a fitting concept of size 

            


Return the first fitting concept that is found in this way

𝒪 E+, E−

⋮
i i
⋮

[ten Cate, Funk, J, Lutz IJCAI’23]

Similarity with Bounded Model Checking                [Biere, Cimatti, Clarke, Zhu TACAS 1999] 

Bounded fitting is Occam Algorithm (independent of ontology/query language)


                      sample efficient with complexity:       


Flexibility - different size measures work
- different sequences such as 1, 2, 4, 8, … work

O( 1
ε

⋅ log 1
ε

⋅ 1
δ

⋅ log |Σ | ⋅ | |qT | | )



SPELL: Bounded Fitting for ℰℒ
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Observation   Problem in 


         Round :  search for a fitting concept of size 


is NP-complete for ontology and query language 


Our system SPELL (  https://github.com/spell-system/SPELL)


implements Bounded Fitting for  leveraging a SAT solver


 Talk tomorrow @DL with more information and detailed benchmarks

i i

ℰℒ

⇒
ℰℒ

⇒



SPELL Demo


