Concept Learning in Description Logics - Part 3:

Exact and PAC Learning

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

Exact Learning

> developed in 1987 by Dana Angluin in the context of learning finite automata
> our assumption: logic and domain expertise are not in the same hands

Learner and Teacher agree on ontology \mathcal{O}
Question: Does Learner have a strategy to efficiently identify q_{T} ?

Questions

> Membership query
(D,a)

> Equivalence query

Example

Ontology $\mathcal{O}=\{$ Fish \sqsubseteq Animal, \quad Dog \sqsubseteq Mammal, \quad Mammal \sqsubseteq Animal $\}$

What is known?

Efficient Learnability
=
learning strategy is guaranteed to identify target in time polynomial in signature, ontology, target, largest counterexample

query class	ontology	questions	learnability	today
$\mathscr{E} \mathscr{L} / \mathscr{E} \mathscr{L} \mathscr{F}$-concepts	no	MQ	efficient	\Leftarrow
$\mathscr{E} \mathscr{L}$-concepts	$\mathscr{E} \mathscr{L}$	MQ+EQ	efficient	\Leftarrow
CQ	no	$\mathrm{MQ}+\mathrm{EQ}$	efficient	
$\mathrm{CQ} / \mathscr{E} \mathscr{L} \mathscr{F}$-concepts	$\mathscr{E} \mathscr{L} \mathscr{F}$	$\mathrm{MQ}+\mathrm{EQ}$	not efficient	
CQ	DL -Lite/ $\mathscr{E} \mathscr{L}$	$\mathrm{MQ}+\mathrm{EQ}$	open	
$\mathscr{E} \mathscr{L} \mathscr{F}$-concepts	$\mathscr{E} \mathscr{L}$	$\mathrm{MQ}+\mathrm{EQ}$	open	

Sources
ten Cate, Dalmau, \& Kolaitis, ToDS, 2013
ten Cate \& Dalmau, ToDS, 2022
Funk, Jung, \& Lutz, IJCAI, 2021/2022

Learning Strategy

All known learning algorithms follow a general scheme: they construct

$$
\begin{array}{ccccccccc}
q_{0} & \subsetneq_{0} & q_{1} & \subsetneq_{0} & \ldots & \subsetneq_{0} & q_{n} & =q_{T}
\end{array}
$$

Start $q_{0}: \quad$ very strong query that is guaranteed to entail q_{T}

Step $q_{i} \rightarrow q_{i+1}$: two different strategies for weakening q_{i}
a) based on frontiers \approx minimal weakenings of q_{i}
b) based on incorporation of counterexample (usually via product)

Key ingredient Using MQs, we can (syntactically) minimize the q_{i}

Lemma Sequence q_{0}, \ldots, q_{n} as above with all q_{i} minimal is bounded by a polynomial in signature, ontology, and target

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?
Yes

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?
Yes: enumerate all concepts by size and ask equivalence query for each one

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?
Yes: enumerate all concepts by size and ask equivalence query for each one running time exponential in $\left|C_{T}\right|$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature Σ of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?
Yes: enumerate all concepts by size and ask equivalence query for each one running time exponential in $\left|C_{T}\right|$

Is there a polynomial time learning algorithm?
(polynomial in the size of $C_{T}, \mathcal{O}, \Sigma$ and largest counterexample)?

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Exact learning of concepts:

- Teacher knows target DL concept C_{T} and answers membership and equivalence queries
- Learner knows DL ontology \mathcal{O} and signature \sum of C_{T}.

Learnability:
Is there an algorithm that the learner can execute to always identify C_{T} ?
Yes: enumerate all concepts by size and ask equivalence query for each one running time exponential in $\left|C_{T}\right|$

Is there a polynomial time learning algorithm?
(polynomial in the size of $C_{T}, \mathcal{O}, \Sigma$ and largest counterexample)?
We will look at the polynomial time learnability of $\mathcal{E} \mathcal{L}$-concepts under ontologies.
First step: empty ontology ($(\mathcal{O}=\emptyset)$

Learning $\mathcal{E L}$-Concepts

Idea 1: Checking Subsumption
How can we use membership queries to identify C_{T} ?

Learning $\mathcal{E} \mathcal{L}$-Concepts

Idea 1: Checking Subsumption

How can we use membership queries to identify C_{T} ?
Every $\mathcal{E} \mathcal{L}$-concept C can be represented in a natural way as a data instance $\left(\mathcal{D}_{C}, a_{C}\right)$

Learning $\mathcal{E} \mathcal{L}$-Concepts

Idea 1: Checking Subsumption

How can we use membership queries to identify C_{T} ?
Every $\mathcal{E} \mathcal{L}$-concept C can be represented in a natural way as a data instance $\left(\mathcal{D}_{C}, a_{C}\right)$

For all $\mathcal{E L}$-concepts $C_{1}, C_{2}: \quad C_{1} \sqsubseteq C_{2}$ if and only if $\mathcal{D}_{C_{1}} \models C_{2}\left(a_{C_{2}}\right)$

Learning $\mathcal{E} \mathcal{L}-$ Concepts

Idea 1: Checking Subsumption

How can we use membership queries to identify C_{T} ?
Every $\mathcal{E} \mathcal{L}$-concept C can be represented in a natural way as a data instance $\left(\mathcal{D}_{C}, a_{C}\right)$

For all $\mathcal{E L}$-concepts $C_{1}, C_{2}: \quad C_{1} \sqsubseteq C_{2}$ if and only if $\mathcal{D}_{C_{1}} \models C_{2}\left(a_{C_{2}}\right)$
Especially: $C \sqsubseteq C_{T}$ if and only if $\mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$

Learning $\mathcal{E L}$-Concepts

Idea 1: Checking Subsumption

How can we use membership queries to identify C_{T} ?
Every $\mathcal{E} \mathcal{L}$-concept C can be represented in a natural way as a data instance $\left(\mathcal{D}_{C}, a_{C}\right)$

For all $\mathcal{E L}$-concepts $C_{1}, C_{2}: \quad C_{1} \sqsubseteq C_{2}$ if and only if $\mathcal{D}_{C_{1}} \models C_{2}\left(a_{C_{2}}\right)$
Especially: $C \sqsubseteq C_{T}$ if and only if $\mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$
If the response to the membership query $\mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ is "Yes", then $C \sqsubseteq C_{T}$.

Learning $\mathcal{E L}$-Concepts

Idea 1: Checking Subsumption

How can we use membership queries to identify C_{T} ?
Every $\mathcal{E} \mathcal{L}$-concept C can be represented in a natural way as a data instance $\left(\mathcal{D}_{C}, a_{C}\right)$

For all $\mathcal{E} \mathcal{L}$-concepts $C_{1}, C_{2}: \quad C_{1} \sqsubseteq C_{2}$ if and only if $\mathcal{D}_{C_{1}} \models C_{2}\left(a_{C_{2}}\right)$
Especially: $C \sqsubseteq C_{T}$ if and only if $\mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$
If the response to the membership query $\mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ is "Yes", then $C \sqsubseteq C_{T}$.
We can use a membership query to test $C \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$,

Idea 2: Approaching C_{T} from below

Learning $\mathcal{E} \mathcal{L}$-Concepts

Idea 2: Approaching C_{T} from below
If there is a concept C such that
$C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$,
then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ?

Learning $\mathcal{E} \mathcal{L}$-Concepts

Idea 2: Approaching C_{T} from below

If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$, then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E} \mathcal{L}$-Concepts

Idea 2: Approaching C_{T} from below
If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$, then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$, then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

Idea 2: Approaching C_{T} from below
If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$,
then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

Idea 2: Approaching C_{T} from below
If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$,
then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

Idea 2: Approaching C_{T} from below
If there is a concept C such that $C \sqsubseteq C_{T}$ and $C_{T} \nsubseteq C$,
then there must be a concept D such that

$$
D \sqsubseteq C_{T}, C \sqsubseteq D \text {, and } D \nsubseteq C
$$

Any such D moves us closer to C_{T} (decreases number of possibilites for C_{T})
How can we construct such a D ? Generalize C and check $D \sqsubseteq C_{T}$

Learning $\mathcal{E L}$-Concepts

We need to check all possible generalizations of C

Definition (Frontier of C)

A set of concepts \mathcal{F} is a frontier of C if

1. $C \sqsubseteq D$ and $D \nsubseteq C$ for all $D \in \mathcal{F}$

Learning $\mathcal{E L}$-Concepts

Frontiers

We need to check all possible generalizations of C

Definition (Frontier of C)

A set of concepts \mathcal{F} is a frontier of C if

1. $C \sqsubseteq D$ and $D \nsubseteq C$ for all $D \in \mathcal{F}$
2. for every concept D^{\prime} with $C \sqsubseteq D^{\prime}$ and $D^{\prime} \nsubseteq C$, there is a $D \in \mathcal{F}$ such that $D \sqsubseteq D^{\prime}$.

Learning $\mathcal{E L}$-Concepts

We need to check all possible generalizations of C
Definition (Frontier ofC)
A set of concepts \mathcal{F} is a frontier of C if

1. $C \sqsubseteq D$ and $D \nsubseteq C$ for all $D \in \mathcal{F}$
2. for every concept D^{\prime} with $C \sqsubseteq D^{\prime}$ and $D^{\prime} \nsubseteq C$, there is a $D \in \mathcal{F}$ such that $D \sqsubseteq D^{\prime}$.

Theorem (ten Cate and Dalmau 2021/Kriegel 2018)
Let C be an EL-concept. Then a frontier of C can be computed in polynomial time (in $|C|$)

Learning $\mathcal{E} \mathcal{L}$-Concepts

We need to check all possible generalizations of C
Definition (Frontier ofC)
A set of concepts \mathcal{F} is a frontier of C if

1. $C \sqsubseteq D$ and $D \nsubseteq C$ for all $D \in \mathcal{F}$
2. for every concept D^{\prime} with $C \sqsubseteq D^{\prime}$ and $D^{\prime} \nsubseteq C$, there is a $D \in \mathcal{F}$ such that $D \sqsubseteq D^{\prime}$.

Theorem (ten Cate and Dalmau 2021/Kriegel 2018)
Let C be an $\mathcal{E L}$-concept. Then a frontier of C can be computed in polynomial time (in $|C|$)

Learning $\mathcal{E L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

Learning $\mathcal{E} \mathcal{L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

$$
\text { C } \quad C_{T}
$$

Learning $\mathcal{E L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

	C	C_{T}
a_{1}	a_{1}	a_{1}
$\downarrow r$	/r $\downarrow r>r$	r
a_{2}	$a_{2} \quad a_{2}^{\prime} \quad a_{2}^{\prime \prime}$	a_{2}
A_{1}, A_{2}, A_{3}	$A_{1}, A_{2} \quad A_{1}, A_{3} \quad A_{2}, A_{3}$	A_{1}

Learning $\mathcal{E} \mathcal{L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

Only small part of C needed for $C \sqsubseteq C_{T}\left(\leqslant\left|C_{T}\right|\right)$

Learning $\mathcal{E} \mathcal{L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

Only small part of C needed for $C \sqsubseteq C_{T}\left(\leqslant\left|C_{T}\right|\right)$

Learning $\mathcal{E} \mathcal{L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

Only small part of C needed for $C \sqsubseteq C_{T}\left(\leqslant\left|C_{T}\right|\right)$
minimize (C) : for each existential restriction, remove if it is unecessary

Learning $\mathcal{E} \mathcal{L}$-Concepts

Problem: Frontier-chains are long and concepts are too large

		C	minimize (C)	C_{T}
a_{1}		a_{1}		a_{1}
$\downarrow r$		r	$\downarrow r$	r
a_{2}	a_{2}	a_{2}^{\prime}	$a_{2}^{\prime \prime}$	a_{2}^{\prime}
A_{1}, A_{2}, A_{3}	A_{1}, A_{2}	A_{1}, A_{3}	A_{2}, A_{3}	A_{1}, A_{3}

Only small part of C needed for $C \sqsubseteq C_{T}\left(\leqslant\left|C_{T}\right|\right)$
minimize (C) : for each existential restriction, remove if it is unecessary $C \sqsubseteq \operatorname{minimize}(C) \sqsubseteq C_{T}$ and \mid minimize $(C)|\leqslant| C_{T}$

Learning $\mathcal{E L}$-Concepts

Idea 3: Minimization

Problem: Frontier-chains are long and concepts are too large

		C		minimize (C)
a_{1}		a_{1}		a_{1}
$\downarrow r$		r	\downarrow	r
a_{2}	a_{2}	a_{2}^{\prime}	$a_{2}^{\prime \prime}$	$\downarrow r$
A_{1}, A_{2}, A_{3}	A_{1}, A_{2}	A_{1}, A_{3}	A_{2}, A_{3}	a_{1}^{\prime}, A_{3}

Only small part of C needed for $C \sqsubseteq C_{T}\left(\leqslant\left|C_{T}\right|\right)$
minimize (C) : for each existential restriction, remove if it is unecessary

$$
C \sqsubseteq \operatorname{minimize}(C) \sqsubseteq C_{T} \text { and } \mid \text { minimize }(C)|\leqslant| C_{T}
$$

Lemma
A sequence of minimized concepts that approaches C_{T} has at most polynomial length (in $\left|C_{T}\right|$)

Learning $\mathcal{E L}$-Concepts

Input An $\mathcal{E} \mathcal{L}$-concept C_{0} such that $C_{0} \sqsubseteq C_{T}$
Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while there is a D in the frontier of C_{H} with $D \sqsubseteq C_{T}$ do
$C_{H}:=\operatorname{minimize}(D)$
end while
return C_{H}
Theorem (ten Cate and Dalmau 2021)
\mathcal{E}-concepts are polynomial time learnable using only membership queries (under the empty ontology)

Learning $\mathcal{E} \mathcal{L}-$ Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)

Learning $\mathcal{E} \mathcal{L}-$ Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)
For a given Σ, there is (\mathcal{D}, a) such that $\mathcal{D} \models C_{T}(a)$ for all C_{T} over Σ

Learning $\mathcal{E L}$-Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)
For a given Σ, there is (\mathcal{D}, a) such that $\mathcal{D} \models C_{T}(a)$ for all C_{T} over Σ
Repeatedly double cycles and minimize (membership queries) to obtain C with $C \sqsubseteq C_{T}$

$$
\begin{gathered}
\left(\mathcal{D}, a_{1}\right) \\
A_{1}, A_{2}, A_{3} \\
a_{1} \\
\bigcup \\
\begin{array}{l}
\text { a }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
C_{T} \\
a_{1} \\
\quad \stackrel{ }{ }{ }^{2} \\
a_{2} \\
A_{1}, A_{2}, A_{3}
\end{gathered}
$$

Learning $\mathcal{E} \mathcal{L}$-Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)
For a given Σ, there is (\mathcal{D}, a) such that $\mathcal{D} \models C_{T}(a)$ for all C_{T} over Σ
Repeatedly double cycles and minimize (membership queries) to obtain C with $C \sqsubseteq C_{T}$

$\left(\mathcal{D}, a_{1}\right)$	Double cycle
A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}
a_{1}	a_{1}
\cup	$r\left({ }_{U}\right) r$
r	a_{2}
	A_{1}, A_{2}, A_{3}

$$
\begin{gathered}
C_{T} \\
a_{1} \\
\downarrow r \\
a_{2} \\
A_{1}, A_{2}, A_{3}
\end{gathered}
$$

Learning $\mathcal{E} \mathcal{L}$-Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)
For a given Σ, there is (\mathcal{D}, a) such that $\mathcal{D} \models C_{T}(a)$ for all C_{T} over Σ
Repeatedly double cycles and minimize (membership queries) to obtain C with $C \sqsubseteq C_{T}$

$\left(\mathcal{D}, a_{1}\right)$	Double cycle
A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}
a_{1}	a_{1}
\cup	$\left.r()^{2}\right) r$
r	a_{2}
	A_{1}, A_{2}, A_{3}

$$
\begin{gathered}
C_{T} \\
a_{1} \\
\downarrow r \\
a_{2} \\
A_{1}, A_{2}, A_{3}
\end{gathered}
$$

Learning $\mathcal{E L}$-Concepts

How can we obtain the input C_{0} ? (with $C_{0} \sqsubseteq C_{T}$)
For a given Σ, there is (\mathcal{D}, a) such that $\mathcal{D} \models C_{T}(a)$ for all C_{T} over Σ
Repeatedly double cycles and minimize (membership queries) to obtain C with $C \sqsubseteq C_{T}$ extract-el: from a data instance (\mathcal{D}, a) with $\mathcal{D} \models C_{T}(a)$, extract an $\mathcal{E} \mathcal{L}$-concept C such that $\mathcal{D} \models C(a)$ and $C \sqsubseteq C_{T}$

$\left(\mathcal{D}, a_{1}\right)$	Double cycle	C	C_{T}
A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}	
a_{1}	a_{1}	a_{1}	a_{1}
\bigcup_{r}	$r\left({ }_{2}\right) r$	$\downarrow r$	$\downarrow r$
	a_{2}	a_{2}	a_{2}
	A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}	A_{1}, A_{2}, A_{3}

Learning $\mathcal{E} \mathcal{L}$-Concepts

- More expressive concepts

Also works for $\mathcal{E L J}$-concepts ($\mathcal{E L}$ with inverses) and "c-acyclic" conjunctive queries (ten Cate and Dalmau 2022)

Learning $\mathcal{E} \mathcal{L}$-Concepts

- More expressive concepts

Also works for $\mathcal{E L J}$-concepts ($\mathcal{E L}$ with inverses) and "c-acyclic" conjunctive queries (ten Cate and Dalmau 2022)

- Non-empty ontologies

Also works under some lightweight ontology languages like DL-Lite core (F., Jung, Lutz 2022)

Frontiers w.r.t. DL-Lite $e_{\text {core }}$ ontologies can be computed in polynomial time

Learning $\mathcal{E} \mathcal{L}-$ Concepts

- More expressive concepts

Also works for $\mathcal{E L J}$-concepts ($\mathcal{E L}$ with inverses) and "c-acyclic" conjunctive queries (ten Cate and Dalmau 2022)

- Non-empty ontologies

Also works under some lightweight ontology languages like DL-Lite core (F., Jung, Lutz 2022)

Frontiers w.r.t. DL-Lite core ontologies can be computed in polynomial time

- Disjointness constraints

If the ontology contains disjointness constraints like $A \sqcap B \sqsubseteq \perp$ then obtaining the initial concept becomes more complicated

Learning $\mathcal{E} \mathcal{L}$-Concepts

- More expressive concepts

Also works for $\mathcal{E L J}$-concepts ($\mathcal{E L}$ with inverses) and "c-acyclic" conjunctive queries (ten Cate and Dalmau 2022)

- Non-empty ontologies

Also works under some lightweight ontology languages like DL-Lite core (F., Jung, Lutz 2022)

Frontiers w.r.t. DL-Lite core ontologies can be computed in polynomial time

- Disjointness constraints

If the ontology contains disjointness constraints like $A \sqcap B \sqsubseteq \perp$ then obtaining the initial concept becomes more complicated

- Practicality
asks a lot of membership queries

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

- Testing subsumption with membership queries works
$\mathcal{O}, \mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ if and only if $\mathcal{O} \models C \sqsubseteq C_{T}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

- Testing subsumption with membership queries works
$\mathcal{O}, \mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ if and only if $\mathcal{O} \models C \sqsubseteq C_{T}$
- Minimization works

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

- Testing subsumption with membership queries works
$\mathcal{O}, \mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ if and only if $\mathcal{O} \models C \sqsubseteq C_{T}$
- Minimization works
- extract-el works

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

- Testing subsumption with membership queries works
$\mathcal{O}, \mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ if and only if $\mathcal{O} \models C \sqsubseteq C_{T}$
- Minimization works
- extract-el works
- Frontiers can no longer be computed in polynomial time

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Now we move on to learning $\mathcal{E} \mathcal{L}$-concepts under $\mathcal{E} \mathcal{L}$-ontologies.
How many of our idea do still work?

- Testing subsumption with membership queries works
$\mathcal{O}, \mathcal{D}_{C} \models C_{T}\left(a_{C}\right)$ if and only if $\mathcal{O} \models C \sqsubseteq C_{T}$
- Minimization works
- extract-el works
- Frontiers can no longer be computed in polynomial time

Theorem (F., Jung, Lutz, 2021)
\mathcal{E}-concepts are not polynomial time learnable under $\mathcal{E L}$-ontologies using only membership queries

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Using only membership queries
Consider an $\mathcal{E} \mathcal{L}$ ontology \mathcal{O} with the CIs:

$$
A_{i} \sqcap B_{i} \sqsubseteq A_{1} \sqcap B_{1} \sqcap \cdots \sqcap A_{n} \sqcap B_{n} \quad \text { for } 1 \leqslant i \leqslant n
$$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Consider an $\mathcal{E} \mathcal{L}$ ontology \mathcal{O} with the CIs:

$$
A_{i} \sqcap B_{i} \sqsubseteq A_{1} \sqcap B_{1} \sqcap \cdots \sqcap A_{n} \sqcap B_{n} \quad \text { for } 1 \leqslant i \leqslant n
$$

and the set of concepts $S=\left\{\alpha_{1} \sqcap \cdots \sqcap \alpha_{n} \mid \alpha_{i} \in\left\{A_{i}, B_{i}\right\}\right\}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Consider an $\mathcal{E} \mathcal{L}$ ontology \mathcal{O} with the CIs:

$$
A_{i} \sqcap B_{i} \sqsubseteq A_{1} \sqcap B_{1} \sqcap \cdots \sqcap A_{n} \sqcap B_{n} \quad \text { for } 1 \leqslant i \leqslant n
$$

and the set of concepts $S=\left\{\alpha_{1} \sqcap \cdots \sqcap \alpha_{n} \mid \alpha_{i} \in\left\{A_{i}, B_{i}\right\}\right\}$
$C_{T} \in S$ is hard to identify:
If $\mathcal{O}, \mathcal{D} \models C_{1}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{2}(a)$ for $C_{1}, C_{2} \in S$ with $C_{1} \neq C_{2}$, then $\mathcal{O}, \mathcal{D} \models C(a)$ for all $C \in S$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Consider an $\mathcal{E} \mathcal{L}$ ontology \mathcal{O} with the CIs:

$$
A_{i} \sqcap B_{i} \sqsubseteq A_{1} \sqcap B_{1} \sqcap \cdots \sqcap A_{n} \sqcap B_{n} \quad \text { for } 1 \leqslant i \leqslant n
$$

and the set of concepts $S=\left\{\alpha_{1} \sqcap \cdots \sqcap \alpha_{n} \mid \alpha_{i} \in\left\{A_{i}, B_{i}\right\}\right\}$
$C_{T} \in S$ is hard to identify:
If $\mathcal{O}, \mathcal{D} \models C_{1}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{2}(a)$ for $C_{1}, C_{2} \in S$ with $C_{1} \neq C_{2}$, then $\mathcal{O}, \mathcal{D} \models C(a)$ for all $C \in S$
Worst case: learning algorithm needs $|S|=2^{n}$ membership queries to identify C_{T} in S

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Consider an $\mathcal{E} \mathcal{L}$ ontology \mathcal{O} with the CIs:

$$
A_{i} \sqcap B_{i} \sqsubseteq A_{1} \sqcap B_{1} \sqcap \cdots \sqcap A_{n} \sqcap B_{n} \quad \text { for } 1 \leqslant i \leqslant n
$$

and the set of concepts $S=\left\{\alpha_{1} \sqcap \cdots \sqcap \alpha_{n} \mid \alpha_{i} \in\left\{A_{i}, B_{i}\right\}\right\}$
$C_{T} \in S$ is hard to identify:
If $\mathcal{O}, \mathcal{D} \models C_{1}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{2}(a)$ for $C_{1}, C_{2} \in S$ with $C_{1} \neq C_{2}$, then $\mathcal{O}, \mathcal{D} \models C(a)$ for all $C \in S$

Worst case: learning algorithm needs $|S|=2^{n}$ membership queries to identify C_{T} in S
Learning algorithm for $\mathcal{E} \mathcal{L}$-ontologies must use equivalence queries and counterexamples

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Counter examples and Products
Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Counter examples and Products
Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or
- $\mathcal{O}, \mathcal{D} \not \vDash C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \vDash \mathcal{C}_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \vDash \mathcal{C}_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Need: generalize C_{H} such that $\mathcal{O}, \mathcal{D} \models C_{H}(a)$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Need: generalize C_{H} such that $\mathcal{O}, \mathcal{D} \models C_{H}(a)$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Need: generalize C_{H} such that $\mathcal{O}, \mathcal{D} \models C_{H}(a) \Longrightarrow$ direct product \times

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Need: generalize C_{H} such that $\mathcal{O}, \mathcal{D} \models C_{H}(a) \Longrightarrow$ direct product \times

$\left(\mathcal{D}, b_{1}\right)$
$b_{1} B$
\bigcup_{r}

$$
\begin{gathered}
C_{H} \times\left(\mathcal{D}, b_{1}\right) \\
\left(a_{1}, b_{1}\right) \\
\downarrow r \\
\left(a_{2}, b_{1}\right) \\
\vee r \\
\left(a_{3}, b_{1}\right) \quad \text { В } \quad\left(a_{4}, b_{1}\right)
\end{gathered}
$$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Learner asks equivalence query with hypothesis C_{H}
If $\mathcal{O} \not \vDash C_{H} \not \equiv C_{T}$, then teacher returns counter example (\mathcal{D}, a) such that

- $\mathcal{O}, \mathcal{D} \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \not \vDash C_{T}(a)$, or (Not possible if we ensure that $\mathcal{O} \models C_{H} \sqsubseteq C_{T}$)
- $\mathcal{O}, \mathcal{D} \not \models C_{H}(a)$ and $\mathcal{O}, \mathcal{D} \models C_{T}(a)$.

Need: generalize C_{H} such that $\mathcal{O}, \mathcal{D} \models C_{H}(a) \Longrightarrow$ direct product \times

$\begin{array}{cc}\left(\mathcal{D}, b_{1}\right) \\ b_{1} & B \\ \bigcup_{r} & \end{array}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Algorithm, first try
Input An $\mathcal{E} \mathcal{L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{o} such that $\mathcal{O} \models C_{\circ} \sqsubseteq C_{T}$ Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=C_{H} \times(\mathcal{D}, a)$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Algorithm, first try
Input An $\mathcal{E L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{0} such that $\mathcal{O} \models C_{0} \sqsubseteq C_{T}$
Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=C_{H} \times(\mathcal{D}, a)$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}
For a counterexample (\mathcal{D}, a) with

1. $C_{H} \sqsubseteq C_{T}$ and $\mathcal{D} \models C_{T}(a)$
2. $\mathcal{D} \not \vDash C_{H}(a)$,
it follows that $C_{H} \sqsubseteq C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Algorithm, first try
Input An $\mathcal{E} \mathcal{L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{0} such that $\mathcal{O} \models C_{\circ} \sqsubseteq C_{T}$
Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=C_{H} \times(\mathcal{D}, a)$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}
For a counterexample (\mathcal{D}, a) with

1. $C_{H} \sqsubseteq C_{T}$ and $\mathcal{D} \models C_{T}(a)$
2. $\mathcal{D} \not \vDash C_{H}(a)$,
it follows that $C_{H} \sqsubseteq C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$ and $C_{H} \times(\mathcal{D}, a) \nsubseteq C_{H}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Compact Models
$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . T, \quad B \sqsubseteq \exists r . T\}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . T, \quad B \sqsubseteq \exists r . T\}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . \top, \quad B \sqsubseteq \exists r . T\}$

$\mathcal{O} \models C_{H} \sqsubseteq C_{T}$ and $\mathcal{O}, \mathcal{D} \models C_{T}\left(b_{1}\right)$, but $\mathcal{O} \not \vDash C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$.

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . T, \quad B \sqsubseteq \exists r . T\}$

$\mathcal{O} \models C_{H} \sqsubseteq C_{T}$ and $\mathcal{O}, \mathcal{D} \models C_{T}\left(b_{1}\right)$, but $\mathcal{O} \not \vDash C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$. Need to include consequences of \mathcal{O}

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . \top, \quad B \sqsubseteq \exists r . T\}$

$\mathcal{O} \models C_{H} \sqsubseteq C_{T}$ and $\mathcal{O}, \mathcal{D} \models C_{T}\left(b_{1}\right)$, but $\mathcal{O} \not \vDash C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$. Need to include consequences of \mathcal{O}

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . \top, \quad B \sqsubseteq \exists r . T\}$

$\mathcal{O} \models C_{H} \sqsubseteq C_{T}$ and $\mathcal{O}, \mathcal{D} \models C_{T}\left(b_{1}\right)$, but $\mathcal{O} \not \vDash C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$. Need to include consequences of \mathcal{O}

In $\mathcal{E} \mathcal{L}$ there can be infinite consequences $(A \sqsubseteq \exists r . A)$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

$C_{H} \times(\mathcal{D}, a)$ does not work under $\mathcal{E} \mathcal{L}$-ontologies. Let $\mathcal{O}=\{A \sqsubseteq \exists r . \top, \quad B \sqsubseteq \exists r . T\}$

$\mathcal{O} \models C_{H} \sqsubseteq C_{T}$ and $\mathcal{O}, \mathcal{D} \models C_{T}\left(b_{1}\right)$, but $\mathcal{O} \not \vDash C_{H} \times(\mathcal{D}, a) \sqsubseteq C_{T}$. Need to include consequences of \mathcal{O}

In $\mathcal{E L}$ there can be infinite consequences $(A \sqsubseteq \exists r . A)$
Fortunately, for $\mathcal{E L}$ there are compact universal models $\mathcal{G}_{\mathcal{C}_{H}, \mathcal{O}}$ of ontologies (with size polynomial in $\left|C_{H}\right|$ and $\left.|\mathcal{O}|\right)$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Input An $\mathcal{E} \mathcal{L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{o} such that $\mathcal{O} \models C_{\circ} \sqsubseteq C_{T}$ Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=\mathcal{G}_{\mathcal{C}_{H}, \mathcal{O}} \times \mathcal{G}_{\mathcal{D}, \mathcal{O}}$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Input An $\mathcal{E} \mathcal{L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{o} such that $\mathcal{O} \models C_{\circ} \sqsubseteq C_{T}$ Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=\operatorname{extract-el}\left(\mathcal{G}_{C_{H}, \mathcal{O}} \times \mathcal{G}_{\mathcal{D}, \mathcal{O}}\right)$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

Input An $\mathcal{E} \mathcal{L}$-ontology \mathcal{O} and an $\mathcal{E} \mathcal{L}$-concept C_{o} such that $\mathcal{O} \models C_{\circ} \sqsubseteq C_{T}$
Output An $\mathcal{E} \mathcal{L}$-concept C_{H} such that $\mathcal{O} \models C_{H} \equiv C_{T}$
$C_{H}:=C_{0}$
while the equivalence query $\mathcal{O} \models C_{H} \equiv C_{T}$ returns a counterexample (\mathcal{D}, a) do
$C_{H}^{\prime}:=\operatorname{extract-el}\left(\mathcal{G}_{C_{H}, \mathcal{O}} \times \mathcal{G}_{\mathcal{D}, \mathcal{O}}\right)$
$C_{H}:=\operatorname{minimize}\left(C_{H}^{\prime}\right)$
end while
return C_{H}
Theorem (F., Jung, Lutz 2021)
\mathcal{E}-concepts are polynomial time learnable under $\mathcal{E L}$-ontologies

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

- Conjunctive Queries
x-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

- Conjunctive Queries x-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)
- More expressive concepts

Also works for "symmetry-free" ELJ-concepts and "symmetry-free, chordal" $\mathcal{E L J}$-concepts (under $\mathcal{E} \mathcal{L}$-ontologies, compact models exist) (F., Jung, Lutz 2021)

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

- Conjunctive Queries x-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)
- More expressive concepts

Also works for "symmetry-free" ELJ-concepts and "symmetry-free, chordal" $\mathcal{E L J}$-concepts (under $\mathcal{E L}$-ontologies, compact models exist) (F., Jung, Lutz 2021)

- More expressive ontology languages

A similar approach works for DL-Lite horn $^{\text {-ontologies (F., Jung, Lutz 2022) }}$

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

- Conjunctive Queries x-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)
- More expressive concepts

Also works for "symmetry-free" ELJ-concepts and "symmetry-free, chordal" $\mathcal{E L J}$-concepts (under $\mathcal{E L}$-ontologies, compact models exist) (F., Jung, Lutz 2021)

- More expressive ontology languages

A similar approach works for DL-Lite horn -ontologies (F., Jung, Lutz 2022) Does not work for $\mathcal{E L J}$-ontologes (No compact models)

Learning $\mathcal{E} \mathcal{L}$-Concepts under Ontologies

- Conjunctive Queries x-based learning algorithm for conjunctive queries (ten Cate, Dalmau, Kolaitis 2013)
- More expressive concepts Also works for "symmetry-free" ELJ-concepts and "symmetry-free, chordal" $\mathcal{E L J}$-concepts (under $\mathcal{E L}$-ontologies, compact models exist) (F., Jung, Lutz 2021)
- More expressive ontology languages

A similar approach works for DL-Lite horn $^{\text {-ontologies (F., Jung, Lutz 2022) }}$ Does not work for $\mathcal{E L J}$-ontologes (No compact models)

Theorem (F., Jung, Lutz 2021)
$\mathcal{E} \mathcal{L}$-Concepts are not polynomal time learnable under ELJ-ontologies

References

[FJL21] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. "Actively Learning Concepts and Conjunctive Queries under $\mathcal{E} \mathcal{L}^{r}$-Ontologies". In: Proc. of IJCAI. 2021.
[FJL22a] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. "Exact Learning of $\mathcal{E L J}$ Queries in the Presence of DL-Lite-Horn Ontologies". In: Proc. of DL. 2022.
[FJL22b] Maurice Funk, Jean Christoph Jung, and Carsten Lutz. "Frontiers and Exact Learning of $\mathcal{E L J}$ Queries under DL-Lite Ontologies". In: Proc. of IJCAI. 2022.
[Kri18] Francesco Kriegel. "The Distributive, Graded Lattice of EL Concept Descriptions and Its Neighborhood Relation". In: Proc. of CLA. Vol. 2123. 2018, pp. 267-278.
[tD21] Balder ten Cate and Victor Dalmau. "Conjunctive Queries: Unique Characterizations and Exact Learnability". In: Proc. of ICDT. Vol. 186. LIPIcs. 2021, 9:1-9:24.
[tDK13] Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. "Learning schema mappings". In: ACM Trans. Database Syst. 38.4 (2013), 28:1-28:31. DOI: 10.1145/2539032.2539035.

PAC Learning

KR Tutorial on Concept Learning in Description Logics, Rhodes, Sep 03

PAC Learning - Motivation

So far concentrated on fitting/separability problem:
given positive/negative examples, find a concept/query that fits

Neglected the aspect of generalization
we want the fitting concept to generalize well to unseen examples

Leslie Valiant introduced PAC learning in a seminal paper in 1984
Notion of PAC (probably - approximately - correct) tries to capture generalization

Plan

1. Definition
2. Boundaries
3. Occams Razor \& Bounded Fitting
4. SPELL demo

Statistical Machine Learning

unknown probability

 distribution Ddraw examples i.i.d.

$$
e_{1}, \ldots, e_{n}
$$

label with unknown function f^{*}

$$
\left(e_{1}, f^{*}\left(e_{1}\right)\right), \ldots,\left(e_{n}, f^{*}\left(e_{n}\right)\right)
$$

\downarrow
learning algorithm \mathbf{A}

hypothesis h for f^{*}

Papayas on some unknown island

$$
\text { random papayas } P_{1}, \ldots, P_{n}
$$

$$
f^{*}=\text { "nature" labels with }
$$

"tasty" (+) or "not tasty (-)

$$
\left(P_{1},+\right), \ldots,\left(P_{n},-\right)
$$

rule predicting tastyness e.g.:
"if papaya is yellow and has size $10-13 \mathrm{~cm}$ and is not too soft, then it's tasty"

Statistical Machine Learning

PAC Learnability

PAC learnability

Class Q is PAC learnable if there are $\left(\mathbf{A}, m_{Q}\right)$ s.t.:

- \mathbf{A} is learning algorithm
- if given $m_{Q}(\epsilon, \delta, n)$ examples labeled by q of size n, A outputs with high probability $\geq 1-\delta$ a hypothesis $h \in Q$ with small error $\leq \epsilon$

Theorem Every class of queries $Q \subseteq$ FO is PAC learnable.
Proof Every class of queries is union $Q=Q_{1} \cup Q_{2} \cup Q_{3} \cup \ldots$ where Q_{i} is the $\operatorname{size}(i)$-fragment of Q

Each Q_{i} is finite and any countable union of finite classes is PAC-learnable \square
Two notions of Efficiency:
a) polynomial time $\quad \Rightarrow$ efficient PAC learning
b) m_{Q} polynomial in $n, 1 / \varepsilon, 1 / \delta \quad \Rightarrow$ sample-efficient PAC learning

Known:
a) \Rightarrow b)

Failure of Efficient PAC

Q has polynomial size fitting property if
whenever a fitting query exists, there exists one of size polynomial in E^{+}, E^{-}
Q has polynomial time evaluation property if there is a polynomial time algorithm

Theorem (Pitt \& Valiant, J. ACM 1984)

Let Q be polynomial time evaluable and have the polynomial size fitting property. Then: If Q is efficiently PAC learnable, then the fitting problem for Q is in RP.

Consequence Any class $Q \subseteq$ CQs containing all Path Queries is not efficiently PAC learnable (unless NP=RP).

Proof Assume Q is efficiently PAC learnable
[ten Cate, Funk, J, Lutz 2023]
Q is also PAC learnable over the instances from the NP-hardness proof

1) Over these instances we have polynomial size fitting property
2) Instances are tree-shaped \Rightarrow polynomial time evaluation

Apply Pitt \& Valiant.

Efficient PAC with Membership Queries

Tight relation between Exact Learnability and PAC Learnability
Efficient exact learnability with $\mathrm{EQ} \quad \Rightarrow \quad$ Efficient PAC learnability (very often, converse also true)

Efficient exact learnability with $\mathrm{EQ}+\mathrm{MQ} \quad \Rightarrow \quad$ Efficient PAC learnability with MQs

Transfer results

query class	ontology	questions	learnability
$\mathscr{E} \mathscr{L} / \mathscr{E} \mathscr{L} \mathscr{F}$-concepts	no	MQ	efficient
$\mathscr{E L}$-concepts	$\mathscr{E} \mathscr{L}$	$\mathrm{MQ}+\mathrm{EQ}$	efficient
CQ	no	$\mathrm{MQ}+\mathrm{EQ}$	efficient
$\mathrm{CQ} / \mathscr{E} \mathscr{L} \mathscr{F}$-concepts	$\mathscr{E} \mathscr{L} \mathscr{J}$	$\mathrm{MQ}+\mathrm{EQ}$	not efficient
CQ	DL -Lite $/ \mathscr{E} \mathscr{L}$	$\mathrm{MQ}+\mathrm{EQ}$	open
$\mathscr{E} \mathscr{L} \mathscr{F}$-concepts	$\mathscr{E L}$	$\mathrm{MQ}+\mathrm{EQ}$	open

Sample Efficiency of Product Algorithm

Recall the „product algorithm" for $\mathscr{E} \mathscr{L}$:
Given concepts C_{1}, \ldots, C_{n} and D_{1}, \ldots, D_{k} :

1. compute product concept $C:=C_{1} \times \ldots \times C_{n}$
2. if $D_{i} \not \ddagger C$ for all i, return C
3. otherwise return „no fitting concept"

Product algorithm returns always the most specific fitting concept

Bad News Any fitting algorithm that returns a most specific fitting concept (if it exists), is not sample-efficient!
[ten Cate, Funk, J, Lutz IJCAl'23]
So the "natural" algorithm does not enjoy generalization abilities
Same holds for algorithms that
a) return the most general fitting concept
b) return the fitting concept with minimal quantifier depth

Occam's Razor (William of Ockham, 14th century)

"The simplest explanation is usually the best one"

Original formulation "Entities must not be multiplied beyond necessity"
(,multiplied" is here in the sense of „combined")

Computational Learning Theory has poured this intuition into the following definition
Learning algorithm \mathbf{A} is an Occam algorithm if there are a polynomial p and $\alpha \in(0,1)$ such that \mathbf{A} outputs a concept of size $p(s) \cdot m^{\alpha}$, where s is the size of the target and m is the number of examples.

Theorem Every Occam algorithm \mathbf{A} is a sample-efficient PAC learning algorithm.
[Blumer, Ehrenfeucht, Haussler, \& Warmuth J. ACM 1989]
\Rightarrow Occam algorithms are one way to obtain sample-efficient PAC learning algorithms.
(For many hypothesis classes, a converse of this is also true)

Bounded Fitting

Input: Ontology \mathcal{O}, examples E^{+}, E^{-}
Bounded Fitting proceeds in rounds:
Round 1: search for a fitting concept of size 1
Round 2: search for a fitting concept of size 2
\vdots
Round i : search for a fitting concept of size i
\vdots
Return the first fitting concept that is found in this way

Similarity with Bounded Model Checking
[Biere, Cimatti, Clarke, Zhu TACAS 1999]
Bounded fitting is Occam Algorithm (independent of ontology/query language)
sample efficient with complexity: $\quad O\left(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \frac{1}{\delta} \cdot \log |\Sigma| \cdot\left|\left|q_{T}\right|\right|\right)$
Flexibility

- different size measures work
- different sequences such as $1,2,4,8, \ldots$ work

SPELL: Bounded Fitting for $\mathscr{E} \mathscr{L}$

Observation Problem in
Round i : search for a fitting concept of size i
is NP-complete for ontology and query language $\mathscr{E} \mathscr{L}$

Our system SPELL (\Rightarrow https://github.com/spell-system/SPELL)
implements Bounded Fitting for $\mathscr{E} \mathscr{L}$ leveraging a SAT solver
\Rightarrow Talk tomorrow @DL with more information and detailed benchmarks

