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£ Charles Il
Y. King of the United Kingdom

Charles lll is King of the United Kingdom and 14 other
Commonwealth realms. Charles was born in Buckingham

v

Palace during the reign of his maternal grandfather, George
VI, and was three years old when his mother, Elizabeth II,
acceded to the throne in 1952, making him the heir
apparent. Wikipedia

Born: November 14, 1948 (age 74 years), Buckingham
Palace, London, United Kingdom

Full name: Charles Philip Arthur George

Height: 1.78 m

» Most popular application of knowledge graphs (KGs) is Web search
» Approx. 30% of search queries at Google answered by the Google

Knowledge Graph

» Further applications in finance, health, e-commerce, and Industry 4.0
» Predominant portion of open KGs are in RDF
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Domains with Triples

embedded-jsonld : 8,596,990
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URLSs with Triples

embedded-jsonld : 877,812,654

‘microdata : 801,909,298

rdfa : 91,100,238
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» RDF knowledge bases are now first-class citizens of the Web
» Approx. 50% of websites contain RDF'

» 2+ hillion URLs contain RDF statements

» Ca. 100 billion statements in Linked Open Data

See http://webdatacommons.org/structureddata/#results-2022-1
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» Terminology of RDF datasets in description logics
» Popular DLs include £ £# (e.g., for biomedical domain), ALC (e.g.,
for ML-driven applications), and SROZQ (e.g., on the Web)

pubmed:21152856.
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> Given
» Knowledge base G (often called background knowledge)

2Source: https://bit.ly/3sxCj6e
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> Given

» Knowledge base G (often called background knowledge)
> Set of positive examples, e.g., ET = {Louvre, TourEiffel}

2Source: https://bit.ly/3sxCj6e
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> Given

» Knowledge base G (often called background knowledge)
> Set of positive examples, e.g., ET = {Louvre, TourEiffel}
> Set of negative examples, e.g., E~ = {Lily, James}

2Source: https://bit.ly/3sxCj6e

Ngonga: Concept Learning in Description Logics

6/9


https://bit.ly/3sxCj6e

PADERBORN
LL( UNIVERSITY

Basic Setting

Learning Problem

z
2
<
3
4

s a friend of

Jan11984 2

> Given

» Knowledge base G (often called background knowledge)
> Set of positive examples, e.g., ET = {Louvre, TourEiffel}
> Set of negative examples, e.g., E~ = {Lily, James}

» Goal: Find concept H that “describes” E™ and “does not describe”
E—,e.g., H = JisLocatedIn.Place

2Source: https://bit.ly/3sxCj6e
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» Often based on refinement operators

$Source: https://bit.ly/3sxCj6e
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» Often based on refinement operators

Explainable, exploits background knowledge
= Slow ~(

$Source: https://bit.ly/3sxCj6e
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» Deep Learning: e(v;) := ¢ ( D e(pk,vj),e(v,)>

(Vi,pk,v;)€G

“Source: https://bit.ly/3sxCj6e
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» Deep Learning: e(v;) := ¢ D el V) evi)
(Vi,pk,vj)eG
Time-efficient

= Unintelligible, does not exploits background knowledge
“Source: https://bit.ly/3sxCj6e
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Exploit time efficiency of neural approaches
Keep explainability of symbolic approaches

SSource: https://bit.1ly/3sxCj6e
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