
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2020) 34:501–507
https://doi.org/10.1007/s13218-020-00670-x

SYSTEMS DESCRIPTION

onto2problog: A Probabilistic Ontology‑Mediated Querying System
using Probabilistic Logic Programming

Timothy van Bremen1 · Anton Dries1 · Jean Christoph Jung2 

Received: 5 December 2019 / Accepted: 28 May 2020 / Published online: 6 June 2020
© The Author(s) 2020

Abstract
We present onto2problog, a tool that supports ontology-mediated querying of probabilistic data via probabilistic logic pro-
gramming engines. Our tool supports conjunctive queries on probabilistic data under ontologies encoded in the description
logic ELHdr , thus capturing a large part of the OWL 2 EL profile.

1  Introduction

The amount of data collected has grown considerably in
recent years, but with this so has the uncertainty in this data.
For example, sophisticated NLP systems like the Never-End-
ing Language Learner (NELL) [15] are capable of searching
the Internet continuously, extracting information from text
into a computer-readable logical form. Yet systems like this
are not perfectly accurate—indeed, NELL assigns a score
to each extracted fact representing the system’s confidence
in its truth. These scores can be viewed as degrees of belief
in the truth of these facts: in other words, probabilities in
the Bayesian sense. Typically, these probabilistic facts are
assumed to be mutually independent, resulting in a (tuple-
independent) probabilistic database [19].

However, in many cases we have some supplementary
domain knowledge in the form of an ontology, which can
be considered in conjunction with the probabilistic facts.
Motivated by this, Jung and Lutz introduced the frame-
work of ontology-mediated querying of probabilistic data
(OMQPD): given a set of independent probabilistic facts,
an ontology, and a query, evaluate the query on the facts
taking into account the supplementary knowledge from the

ontology [12]. It is important to note that in this line of work
the closed-world assumption that is usually adopted in data-
bases is replaced by the open-world assumption, that is, the
ontology might imply facts that are not explicitly stated in
the initial set provided.

For example, suppose we have two probabilistic facts:

This expresses the knowledge that Alice is a department head
with probability 0.9, and, independently, Alice is a mentor
of Charlie with probability 0.4. It gives rise to a distribution
on four deterministic databases (Table 1): one in which nei-
ther fact is true (with probability (1 − 0.9)(1 − 0.4) = 0.06 ),
one where both facts are true ( (0.9)(0.4) = 0.36 ), and
two when exactly one is true ( (0.9)(1 − 0.4) = 0.54 and
(1 − 0.9)(0.4) = 0.04).

Now suppose that we also have the following (entirely
deterministic) ontology expressed in the description logic
EL:

Intuitively, this ontology expresses that:

1.	 All department heads are professors
2.	 A professor who mentors someone is an academic super-

visor

Assume we wish to pose the query:

0.9 ↦ DepartmentHead(alice)

0.4 ↦ mentors(alice, charlie)

(1)DepartmentHead ⊑ Professor

(2)Professor ⊓ ∃mentors.⊤ ⊑ AcademicSupervisor

 *	 Jean Christoph Jung
	 jeanjung@uni‑bremen.de

	 Timothy van Bremen
	 timothy.vanbremen@cs.kuleuven.be

	 Anton Dries
	 anton.dries@cs.kuleuven.be

1	 KU Leuven, Leuven, Belgium
2	 Universität Bremen, Bremen, Germany

http://orcid.org/0000-0002-4159-2255
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00670-x&domain=pdf

502	 KI - Künstliche Intelligenz (2020) 34:501–507

1 3

Evaluating the query directly on the set of probabilistic facts
earlier returns a probability of zero, as information relating
to the class “ AcademicSupervisor ” does not appear any-
where in the set. But if we evaluate it in combination with
the ontology, we get a probability of 0.36, corresponding
to the world in which Alice is both a department head and
a mentor of Charlie. Thus, the addition of an ontology can
change the results of our query, and in particular, reduce the
uncertainty. This underpins the idea of OMQPD.

To the best of our knowledge there are so far only pre-
liminary implementations realizing this framework in prac-
tice, such as the one proposed by Schoenfisch and Stucken-
schmidt [18]. Unfortunately, this system is incomplete in
the sense that it only works for certain safe combinations of
query and ontology, and only for ontologies in DL-Lite [2].
On the other hand, Zese et al. [23] presented semantics for
DISPONTE knowledge bases and, based on two algorithms
(BUNDLE and TRILL), an implementation for inference on
these knowledge bases. DISPONTE knowledge bases are
slightly different from the framework considered here in the
sense that each axiom in the knowledge base—both facts
and ontology—is annotated with an independent probability.
They use a type-based semantics orthogonal to ours and thus
obtain different probabilities for queries. For an overview
about other combinations of uncertainty and description
logics, we refer the interested reader to (the related work
section of) [10].

Here, we propose the tool onto2problog for the task of
OMQPD when the ontology is formulated in the description
logic ELHdr and the query is a conjunctive query. Conjunc-
tive queries are a common query language and subsume for
example the query Φ above, but can be more complex, such
as

which asks for all department heads who are mentored by
someone.

Φ = AcademicSupervisor(alice).

�(x) = ∃y.DepartmentHead(x) ∧mentors(y, x)

Further, ELHdr (which underlies the OWL 2 EL pro-
file [16]) is the extension of EL [3] with domain and range
restrictions as well as role hierarchies. Thus, beyond state-
ments like (1) and (2) above, in ELHdr we can write state-
ments like

expressing that:

3.	 Anyone who mentors has a PhD
4.	 Anyone who is mentored is a student
5.	 Someone who mentors a person also manages that per-

son

In contrast to previous work our tool is complete in the
sense that it can process all combinations of a query and an
ontology. The base of our implementation is the adaptation
of the combined approach to ontology-mediated querying
over deterministic data [14] to the probabilistic setting [20].
It therefore reduces OMQPD in ELHdr to the task of mar-
ginal inference in a probabilistic logic program, which has
an extensive literature surrounding it with many practical
techniques available. In principle, this reduction can be used
on top of any off-the-shelf probabilistic logic programming
engine; we chose ProbLog 2 [8] for our implementation due
to its flexibility and widespread use.1

In this paper, we first give some background on ontology-
mediated querying of probabilistic data, probabilistic data-
bases, and probabilistic logic programs. We then describe
the implementation of our system and show how it can be
used. Finally, we show an evaluation of our system on the
Lehigh University Benchmark. For the technical details of
our approach, we refer the reader to our earlier conference
paper [20].

2 � Background

In this section, we provide the formal background of ontol-
ogy-mediated query answering over probabilistic data. We
start by reviewing the description logic ELHdr.

(3)���(mentors) ⊑ ∃hasDegree.PhD

(4)���(mentors) ⊑ Student

(5)mentors ⊑ manages

Table 1   Different interpretations of the probabilistic facts, their prob-
abilities, and facts induced from the ontology in the university exam-
ple explained in the text

Abbreviations have been used where clear

World � P(�) Induced facts

DepHead(alice),

mentors(alice, charlie)

0.9 ⋅ (0.4) = 0.36 Professor(alice),

AcadSup(alice)

DepHead(alice) 0.9 ⋅ (1 − 0.4) = 0.54 Professor(alice)

mentors(alice, charlie) (1 − 0.9) ⋅ 0.4 = 0.04 ∅

∅ (1 − 0.9) ⋅ (1 − 0.4) = 0.06∅

1  ProbLog is available for free online at https​://dtai.cs.kuleu​ven.be/
probl​og/.

https://dtai.cs.kuleuven.be/problog/
https://dtai.cs.kuleuven.be/problog/

503KI - Künstliche Intelligenz (2020) 34:501–507	

1 3

2.1 � Ontologies in ELHdr

Fix disjoint countably infinite sets of concept and role names
NC and NR , respectively. Then EL-concepts are formed accord-
ing to the syntax rule

where A ∈ NC and r ∈ NR . An ELHdr -ontology (hereafter
ontology) is a set of concept inclusions C ⊑ D , role inclu-
sions r ⊑ s , domain restrictions ���(r) ⊑ C , and range
restrictions ���(r) ⊑ C , where C and D are EL-concepts and
r, s ∈ NR . An ABox is a finite set of concept assertions A(a)
and role assertions r(a, b) where A ∈ NC , r ∈ NR , and a, b
range over a countably infinite set of individual names NI .
We denote with ���(A) the set of all individual names that
occur in A . The semantics of ELHdr is defined as usual in
terms of interpretations I = (ΔI, ⋅I) ; we elide a full descrip-
tion here and instead refer the reader to Baader et al. [4] for
details. We use standard terminology, e.g., I is a model of T
or A if it satisfies all the concept and role inclusions as well
as domain and range restrictions in T  , or all the assertions
in A , respectively.

2.2 � Ontology‑Mediated Querying over Probabilistic
Data

Let NV denote a countably infinite set of variables disjoint
from NI . Then NT = NV ∪ NI forms the set of terms. A con-
junctive query (CQ) � is a first-order formula

where � and � are tuples of variables in NV , and �(�, �) is
a conjunction of atoms over signature NC ∪ NR using terms
from NT  , but only variables from � and � . We drop the
free variables � of �(�) whenever no confusion can arise.
An ontology-mediated query (OMQ) is a pair (T,�) of an
ontology T and a CQ � . Given an ABox A , and an OMQ
(T,�) , we say that a tuple � of individuals from A is a cer-
tain answer for (T,�) over A if (T,A) ⊧ 𝜑(�) , that is, every
model I of T and A satisfies I ⊧ 𝜑(�) . The set of all certain
answers to (T,�) is denoted by ����A(T,�).

Following [12], we use assertion-independent probabil-
istic ABoxes (ipABoxes) to model uncertain data. Formally,
an ipABox is a pair (A, p) where A is a classical ABox and
p ∶ A → [0, 1] assigns a probability to every assertion in A .
An ipABox (A, p) induces a distribution p(⋅) over possible
ABoxes A′ ⊆ A , which is defined by taking

for every A′ ⊆ A . The probability of an answer � to an
OMQ (T,�) over an ipABox (A, p) is then defined as:

C∶∶=⊤ | A | C ⊓ C | ∃r.C

�(�) = ∃�.�(�, �),

(6)p(A�) = Π�∈A�p(�) ⋅ Π�∈A⧵A� (1 − p(�)),

The prime inference task here is to compute answer prob-
abilities, that is, given an ipABox (A, p) and an OMQ (T,�) ,
compute PrA,p(T,�, �) for all answer candidates �.

Coming back to the example from the introduction, the
set of probabilistic facts corresponds to the ipABox (A, p)
where

and

If we denote with T the ontology from the introduction and
let �(x) be the query AcademicSupervisor(x) , we have:

2.3 � Probabilistic Logic Programs

We introduce a variant of probabilistic logic programs that
is sufficient for our purposes, though some systems support
more features. A probabilistic logic program (PLP) is a tri-
ple (F, p,Π) where F is a set of facts, p ∶ F → [0, 1] assigns
a probability to every fact, and Π is a stratified logic program
consisting of rules of the form:

where H and all Bi are relational atoms over terms. The
semantics of PLPs (F, p,Π) is defined as follows. The pair
(F, p) induces a probability distribution p(⋅) over subsets
F

′ ⊆ F just as in Eq. (6). Moreover, given a set of facts
F and a set of rules Π , we denote with Π(F) the minimal
supported model of F ∪ Π , obtained via the iterated fixed
point construction of [1]. The prime inference task for PLPs
is marginal inference, that is, given a PLP (F, p,Π) and a
distinguished goal predicate G, compute the probability of
all ground facts G(�) under (F, p,Π) , which is defined as:

3 � Our Tool: onto2problog

We have implemented a tool, onto2problog, that ena-
bles the use of probabilistic logic programming infer-
ence methods for computing answer probabilities of

PrA,p(T,𝜑, �) =
∑

A
�⊆A,�∈����A� (T,𝜑)

p(A�).

A = {DepartmentHead(alice), mentors(alice, charlie)}

p(DepartmentHead(alice)) = 0.9

p(mentors(alice, charlie)) = 0.4

PrA,p(T, AcademicSupervisor(x), alice) = .36.

H ← B1,… ,Bm,¬Bm+1,… ,¬Bn

PrF,p,Π(G(�)) =
∑

F
�⊆F,G(�)∈Π(F�)

p(F�).

504	 KI - Künstliche Intelligenz (2020) 34:501–507

1 3

ontology-mediated queries over ipABoxes. The overall
architecture of the inference pipeline supported by our tool
is depicted in Figure 1. The input of the query answering
task consists of the ontology-mediated query (a pair com-
prising a conjunctive query � and an ELHdr-ontology T  ),
and the probabilistic data given by an ipABox (A, p) . Our
tool processes only the ontology-mediated query (T,�) and
outputs a stratified logic program ΠT,� with a distinguished
goal predicate G, which is equivalent to (T,�) in the fol-
lowing sense:

(∗) for every ipABox (A, p) and answer candidate � , we
have

 where A′ is essentially A in a slightly different represen-
tation (described below).

For more concrete information on the structure of ΠT,� ,
we again refer the reader to our accompanying technical
paper [20]. Here, we only stress that its size is polynomial
in the sizes of T and � , that the arity of the relation symbols
used is bounded by the arity of the query, and that it has only
two strata. The use of negation is required to exclude some
spurious answers.

We will next give some details on our system and dem-
onstrate its use with the example given earlier in the intro-
duction. We have implemented onto2problog as a Python
library, so that it can be called in a flexible and modular way.
The ontology is specified in the OWL 2 ontology language
(encoded in the standard RDF/XML format [17]), and the
query is specified in a simple predicate logic-style syntax.

For example, the fragment of our ontology T expressing
the knowledge that all department heads are professors could
be represented as follows in RDF/XML:

PrA,p(T,�, �) = PrA�,p,ΠT,�
(G(�)),

Now suppose we wish to use this ontology and pose the
query earlier in the paper asking for all department heads
mentored by someone. Then we may specify the query � in
our Python script in the following way:

 We can then load in the relevant ontology T  :

 Given T and � , onto2problog can then be used to com-
pute the rewriting ΠT,� as described above (after first nor-
malizing the ontology):

 We are now ready to pair the rewriting with an ipABox
(A, p) . As mentioned above, the rewriting relies on a certain
representation of the ABox which we detail next. We rep-
resent ipABoxes as strings of probabilistic facts over two
fixed predicate names concept and role. For example,
the facts DepartmentHead(alice) and mentors(alice, charlie)
from earlier, along with their probabilities, are specified as
the following string:

 Note that both concept, role, and individual names
become constants under this representation. Putting it all
together, we get our final probabilistic logic program with
the distinguished query predicate q (the name of our query
above):

 We may now pass this to ProbLog to do the “heavy lift-
ing” of computing the marginal probabilities for the distin-
guished predicate q in the constructed PLP, producing a list
of tuples together with their respective probabilities:

 By construction, and in particular because of property (∗)
above, the results returned are the answers to the original
ontology-mediated query task.

ProbLog supports marginal inference via a variety of
different algorithms based on knowledge compilation [6],
for example, to d-DNNF and SDD. It also supports forward

Fig. 1   An overview of the the inference pipeline supported by onto-
2problog 

505KI - Künstliche Intelligenz (2020) 34:501–507	

1 3

inference in a process known as TP-compilation [22]. Using
ProbLog’s Python interface, the user may select which
inference method they wish to use in order to evaluate their
query.

Our tool together with some documentation and an exam-
ple is available online at http://www.infor​matik​.uni-breme​
n.de/~jeanj​ung/onto2​probl​og.html.

4 � Evaluation

We evaluated onto2problog on a probabilistic version of
the Lehigh University Benchmark (LUBM) [9]. LUBM is
a benchmark for measuring the performance of semantic
knowledge base systems in a consistent manner, comprising
an ontology, data generation tool, and a set of test queries.
For the purposes of our experiments, we dropped transitive
and inverse role declarations from the ontology in order to
obtain a valid ELHdr-ontology. Also queries 11, 12, and 13
were deliberately omitted from the test queries as they are
specifically designed to test reasoning with inverse and tran-
sitive role declarations. We set the parameters of the origi-
nal data generation tool to generate an ABox of cardinality
15189. Of this, 12260 statements were role assertions and
the remainder were concept assertions.

We wrote scripts to transform the assertions generated
by the data generation tool to probabilistic facts in Prob-
Log. As the data from the tool is deterministic by default,
we enriched the output by associating each ABox asser-
tion � with an indepedent, uniformly drawn probability
p(�) ∼ U(0, 1) to obtain an ipABox. Finally, using our tool,
we computed the rewritings of each of the LUBM queries

with respect to the ontology. In the second step we used
ProbLog to compute the query probabilities.

We used two different inference methods supported by
ProbLog: (1) the “classic” ProbLog inference approach of
cycle-breaking and compilation to sentential decision dia-
grams (SDDs) [21], and (2) TP-compilation to SDDs, which
avoids the cycle-breaking step altogether through forward
inference [22]. Regardless of the method used, ProbLog first
computes the ground program relevant to the query, that is,
it transforms the probabilistic logic program into one using
only ground atoms (while returning the same probabilities).
We refer to this first phase as the grounding step. We refrain
from giving more details on the methods (1) and (2) here
and instead refer the reader to the aforementioned papers.
The runtimes of the computation, divided into the relevant
steps, is shown in the left side of Table 2.

We compared onto2problog to an alternative approach
to query answering, based on first-order rewritings. Infor-
mally, first-order rewritings transform the input ontology-
mediated query (T,�) into an equivalent first-order query
�T (or equivalently, a non-recursive datalog program).
Although first-order rewritings have been used mainly in
the classical, that is, non-probabilistic, ontology-mediated
query answering, it has been observed that they remain
valid also in the probablistic version OMQPD [12]. In the
case of the ontology language EL , first-order rewritings
are well-studied and it is known that they do not always
exist [11]. Thus, they do not provide a complete tool for
OMQPD. However, LUBM does not use all features pro-
vided by ELHdr . In fact, when dropping the role transitiv-
ity axioms, it is essentially formulated in a variant of DL-
Lite, which implies that for all ontology-mediated queries
based on LUBM, first-order rewritings do exist [2]. We

Table 2   Grounding and compilation runtime for the Lehigh University Benchmark queries

All times are in seconds. “Timeout” indicates that the procedure took over ten minutes to run

onto2problog First-order rewriting

Classic inference Classic inference

Query Grounding T
P
-compilation Cycle-breaking Compilation Grounding T

P
-compilation Cycle-breaking Compilation

1 0.00 0.00 0.00 0.00 0.04 0.05 0.00 0.00
2 70.14 5.17 0.00 0.00 28.82 0.11 0.00 0.00
3 0.03 0.00 0.00 0.00 0.59 0.67 0.00 0.00
4 25.60 5.73 0.02 0.03 0.88 0.95 0.02 0.03
5 28.24 28.04 1.60 2.53 2.39 5.66 0.40 1.05
6 25.61 71.23 2.92 6.30 4.09 50.12 2.23 5.67
7 78.49 6.26 0.04 0.05 4.53 5.44 0.02 0.05
8 30.24 92.90 3.46 7.47 6.19 71.90 2.54 6.91
9 Timeout – – – Timeout – – –
10 27.28 4.85 0.00 0.00 4.35 4.63 0.01 0.03
14 0.32 0.12 0.01 0.03 0.20 0.13 0.00 0.00

http://www.informatik.uni-bremen.de/%7ejeanjung/onto2problog.html
http://www.informatik.uni-bremen.de/%7ejeanjung/onto2problog.html

506	 KI - Künstliche Intelligenz (2020) 34:501–507

1 3

therefore manually computed these rewritings and evalu-
ated them using ProbLog as well. The results of this can
be found in the right side of Table 2.

Interestingly, we see that most of the time is spent in the
grounding step rather than the knowledge compilation step
for each query. These steps correspond to the (determin-
istic) query answering phase and probability computation
phase, respectively. This means that a large amount of time
is taken in the computation of the relevant ground program,
which is based on SLD-resolution. As SLD-resolution is
theoretically not a hard task, we believe this to be the result
of inefficiencies in ProbLog’s implementation of grounding
which become apparent when dealing with large programs
like the ones here.

Moreover, the classic ProbLog inference method of cycle-
breaking and compilation to SDDs consistently outperforms
TP-compilation. We also observe that first-order rewritings
seem to have somewhat better inference times overall, as
a trade-off for the incompleteness of this approach. We
conclude that in practice, it may be best to first test the
first-order rewritability of the query before resorting to the
complete approach provided by onto2problog as a second
option.

Finally, to get an indication of how our method scales,
we examined the total inference time on different ipABox
sizes for a subset of the queries in Table 2 for which infer-
ence appeared non-trivial. The total inference time here is
the sum of grounding, cycle-breaking, and SDD compilation
time. The results are shown in Fig. 2. We observe that the
runtime increases with ipABox size, but the exact nature
of the relationship appears to be dependent on the query in
question: the increase is much steeper for query 8 than query
5, for example.

5 � Conclusion and Future Work

We have presented our tool onto2problog for answering
queries over incomplete probablistic data in the presence
of ontologies formulated in the description logic ELHdr .
The evaluation shows potential for our tool to be used in at
least small-scale scenarios. At the same time, it shows that
the grounding step can be unexpectedly time-consuming.
While it is known that grounding can be expensive in logic
programming (see for instance [13] in the context of answer
set programming), the PLP ΠT,� we produce should not be
“dangerous” in this sense. We therefore conclude that this is
a bottleneck in ProbLog’s implementation, which indeed has
been addressed in very recent work [7]. It would be interest-
ing to combine their results with our efforts.

Beyond these improvements to the grounding step, we
would like to extend our tool in three directions. First, we
want to integrate first-order rewritings into our program
natively, which on the one hand exhibited better perfor-
mance in some of our experiments, but on the other hand
are incomplete in general. Second, we want to investigate
whether our approach can be extended to different ontol-
ogy languages, such as those in the Datalog± family [5].
Finally, it would be interesting to see whether other capa-
bilities of ProbLog, such as learning, can be transferred to
the OMQPD setting.

Acknowledgements  Open Access funding provided by Projekt DEAL.
This work has received funding from the Research Foundation—Flan-
ders (Grant G042815N), and from the European Research Council
under the European Union’s Horizon 2020 research and innovation
programme (Grant 694980).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Apt KR, Blair HA, Walker A (1988) Towards a theory of declar-
ative knowledge. In: Minker J (ed) Foundations of deductive
databases and logic programming. Morgan Kaufmann, Burl-
ington, pp 89–148

	 2.	 Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009)
The dl-lite family and relations. J Artif Int Res 36(1):1–69

	 3.	 Baader F (2003) Terminological cycles in a description logic
with existential restrictions. In: Proceedings of IJCAI 03, pp
325–330. Morgan Kaufmann

Fig. 2   Total inference time on various ipABox sizes, using classic
inference

http://creativecommons.org/licenses/by/4.0/

507KI - Künstliche Intelligenz (2020) 34:501–507	

1 3

	 4.	 Baader F, Horrocks I, Lutz C, Sattler U (2017) An introduction
to description logic. Cambridge University Press, Cambridge

	 5.	 Borgwardt S, Ceylan İİ, Lukasiewicz T (2017) Ontology-
mediated queries for probabilistic databases. In: Proceedings
of AAAI 2017, pp 1063–1069. AAAI Press

	 6.	 Darwiche A, Marquis P (2002) A knowledge compilation map.
J Artif Intell Res 17:229–264

	 7.	 Efthymia T, Gutiérrez-Basulto V, Kimmig A (2020) Beyond
the grounding bottleneck: datalog techniques for inference in
probabilistic logic programs. In: Proceedings of AAAI 2020.
AAAI Press

	 8.	 Fierens D, Van den Broeck G, Renkens J, Shterionov D, Gut-
mann B, Thon I, Janssens G, De Raedt L (2015) Inference and
learning in probabilistic logic programs using weighted boolean
formulas. TPLP 15(3):358–401

	 9.	 Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL
knowledge base systems. J Web Semant 3(2–3):158–182

	10.	 Gutiérrez-Basulto V, Jung JC, Lutz C, Schröder L (2017) Proba-
bilistic description logics for subjective uncertainty. J Artif Intell
Res 58:1–66

	11.	 Hansen P, Lutz C (2017) Computing fo-rewritings in EL in practice:
from atomic to conjunctive queries. In: The Semantic Web—-ISWC
2017—16th International Semantic Web Conference, Vienna, Aus-
tria, October 21-25, 2017, Proceedings, Part I, pp 347–363

	12.	 Jung JC, Lutz C (2012) Ontology-based access to probabilistic
data with OWL QL. In: Proceedings of ISWC 2012, pp 182–197.
Springer

	13.	 Kaufmann B, Leone N, Perri S, Schaub T (2016) Grounding and
solving in answer set programming. AI Mag 37(3):25–32

	14.	 Lutz C, Toman D, Wolter F (2009) Conjunctive query answering
in the description logic EL using a relational database system.
Proc IJCAI 2009:2070–2075

	15.	 Mitchell TM, Cohen WW, Jr, ERH, Talukdar PP, Betteridge J,
Carlson A, Mishra BD, Gardner M, Kisiel B, Krishnamurthy J,

Lao N, Mazaitis K, Mohamed T, Nakashole N, Platanios EA,
Ritter A, Samadi M, Settles B, Wang RC, Wijaya D, Gupta A,
Chen X, Saparov A, Greaves M, Welling J (2015) Never-ending
learning. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pp. 2302–2310. AAAI Press

	16.	 OWL 2 web ontology language profiles (2012) W3C recommen-
dation, W3C (2012). http://www.w3.org/TR/2012/REC-owl2-
profi​les-20121​211/

	17.	 RDF 1.1 XML syntax (2014) W3C recommendation, W3C
(2014). http://www.w3.org/TR/2014/REC-rdf-synta​x-gramm​
ar-20140​225/

	18.	 Schoenfisch J, Stuckenschmidt H (2015) Towards large-scale
probabilistic OBDA. In: Proceedings of SUM 2015, pp 106–120.
Springer

	19.	 Suciu D, Olteanu D, Ré C, Koch C (2011) Probabilistic databases.
Synthesis lectures on data management. Morgan & Claypool Pub-
lishers, New York

	20.	 van Bremen T, Dries A, Jung JC (2019) Ontology-mediated que-
ries over probabilistic data via probabilistic logic programming.
Proc CIKM 2019:2437–2440

	21.	 Vlasselaer J, Renkens J, Van den Broeck G, De Raedt L (2014)
Compiling probabilistic logic programs into sentential decision
diagrams. In: Workshop on Probabilistic Logic Programming
(PLP), Vienna

	22.	 Vlasselaer J, Van den Broeck G, Kimmig A, Meert W, De Raedt
L (2016) T p-compilation for inference in probabilistic logic pro-
grams. Int J Approx Reason 78:15–32

	23.	 Zese R, Bellodi E, Lamma E, Riguzzi F, Aguiari F (2014) Seman-
tics and inference for probabilistic description logics. In: Uncer-
tainty reasoning for the semantic web III—ISWC international
workshops, URSW 2011-2013, lecture notes in computer science,
vol 8816, pp 79–99. Springer

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

	onto2problog: A Probabilistic Ontology-Mediated Querying System using Probabilistic Logic Programming
	Abstract
	1 Introduction
	2 Background
	2.1 Ontologies in
	2.2 Ontology-Mediated Querying over Probabilistic Data
	2.3 Probabilistic Logic Programs

	3 Our Tool: onto2problog
	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgements
	References

