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Abstract
We present onto2problog, a tool that supports ontology-mediated querying of probabilistic data via probabilistic logic pro-
gramming engines. Our tool supports conjunctive queries on probabilistic data under ontologies encoded in the description 
logic ELHdr , thus capturing a large part of the OWL 2 EL profile.

1  Introduction

The amount of data collected has grown considerably in 
recent years, but with this so has the uncertainty in this data. 
For example, sophisticated NLP systems like the Never-End-
ing Language Learner (NELL) [15] are capable of searching 
the Internet continuously, extracting information from text 
into a computer-readable logical form. Yet systems like this 
are not perfectly accurate—indeed, NELL assigns a score 
to each extracted fact representing the system’s confidence 
in its truth. These scores can be viewed as degrees of belief 
in the truth of these facts: in other words, probabilities in 
the Bayesian sense. Typically, these probabilistic facts are 
assumed to be mutually independent, resulting in a (tuple-
independent) probabilistic database [19].

However, in many cases we have some supplementary 
domain knowledge in the form of an ontology, which can 
be considered in conjunction with the probabilistic facts. 
Motivated by this, Jung and Lutz introduced the frame-
work of ontology-mediated querying of probabilistic data 
(OMQPD): given a set of independent probabilistic facts, 
an ontology, and a query, evaluate the query on the facts 
taking into account the supplementary knowledge from the 

ontology [12]. It is important to note that in this line of work 
the closed-world assumption that is usually adopted in data-
bases is replaced by the open-world assumption, that is, the 
ontology might imply facts that are not explicitly stated in 
the initial set provided.

For example, suppose we have two probabilistic facts:

This expresses the knowledge that Alice is a department head 
with probability 0.9, and, independently, Alice is a mentor 
of Charlie with probability 0.4. It gives rise to a distribution 
on four deterministic databases (Table 1): one in which nei-
ther fact is true (with probability (1 − 0.9)(1 − 0.4) = 0.06 ), 
one where both facts are true ( (0.9)(0.4) = 0.36 ), and 
two when exactly one is true ( (0.9)(1 − 0.4) = 0.54 and 
(1 − 0.9)(0.4) = 0.04).

Now suppose that we also have the following (entirely 
deterministic) ontology expressed in the description logic 
EL:

Intuitively, this ontology expresses that: 

1.	 All department heads are professors
2.	 A professor who mentors someone is an academic super-

visor

Assume we wish to pose the query:

0.9 ↦ DepartmentHead(alice)

0.4 ↦ mentors(alice, charlie)

(1)DepartmentHead ⊑ Professor

(2)Professor ⊓ ∃mentors.⊤ ⊑ AcademicSupervisor
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Evaluating the query directly on the set of probabilistic facts 
earlier returns a probability of zero, as information relating 
to the class “ AcademicSupervisor ” does not appear any-
where in the set. But if we evaluate it in combination with 
the ontology, we get a probability of 0.36, corresponding 
to the world in which Alice is both a department head and 
a mentor of Charlie. Thus, the addition of an ontology can 
change the results of our query, and in particular, reduce the 
uncertainty. This underpins the idea of OMQPD.

To the best of our knowledge there are so far only pre-
liminary implementations realizing this framework in prac-
tice, such as the one proposed by Schoenfisch and Stucken-
schmidt [18]. Unfortunately, this system is incomplete in 
the sense that it only works for certain safe combinations of 
query and ontology, and only for ontologies in DL-Lite [2]. 
On the other hand, Zese et al. [23] presented semantics for 
DISPONTE knowledge bases and, based on two algorithms 
(BUNDLE and TRILL), an implementation for inference on 
these knowledge bases. DISPONTE knowledge bases are 
slightly different from the framework considered here in the 
sense that each axiom in the knowledge base—both facts 
and ontology—is annotated with an independent probability. 
They use a type-based semantics orthogonal to ours and thus 
obtain different probabilities for queries. For an overview 
about other combinations of uncertainty and description 
logics, we refer the interested reader to (the related work 
section of) [10].

Here, we propose the tool onto2problog for the task of 
OMQPD when the ontology is formulated in the description 
logic ELHdr and the query is a conjunctive query. Conjunc-
tive queries are a common query language and subsume for 
example the query Φ above, but can be more complex, such 
as

which asks for all department heads who are mentored by 
someone.

Φ = AcademicSupervisor(alice).

�(x) = ∃y.DepartmentHead(x) ∧mentors(y, x)

Further, ELHdr (which underlies the OWL 2 EL pro-
file [16]) is the extension of EL  [3] with domain and range 
restrictions as well as role hierarchies. Thus, beyond state-
ments like (1) and (2) above, in ELHdr we can write state-
ments like

expressing that: 

3.	 Anyone who mentors has a PhD
4.	 Anyone who is mentored is a student
5.	 Someone who mentors a person also manages that per-

son

In contrast to previous work our tool is complete in the 
sense that it can process all combinations of a query and an 
ontology. The base of our implementation is the adaptation 
of the combined approach to ontology-mediated querying 
over deterministic data [14] to the probabilistic setting [20]. 
It therefore reduces OMQPD in ELHdr to the task of mar-
ginal inference in a probabilistic logic program, which has 
an extensive literature surrounding it with many practical 
techniques available. In principle, this reduction can be used 
on top of any off-the-shelf probabilistic logic programming 
engine; we chose ProbLog 2 [8] for our implementation due 
to its flexibility and widespread use.1

In this paper, we first give some background on ontology-
mediated querying of probabilistic data, probabilistic data-
bases, and probabilistic logic programs. We then describe 
the implementation of our system and show how it can be 
used. Finally, we show an evaluation of our system on the 
Lehigh University Benchmark. For the technical details of 
our approach, we refer the reader to our earlier conference 
paper [20].

2 � Background

In this section, we provide the formal background of ontol-
ogy-mediated query answering over probabilistic data. We 
start by reviewing the description logic ELHdr.

(3)���(mentors) ⊑ ∃hasDegree.PhD

(4)���(mentors) ⊑ Student

(5)mentors ⊑ manages

Table 1   Different interpretations of the probabilistic facts, their prob-
abilities, and facts induced from the ontology in the university exam-
ple explained in the text

Abbreviations have been used where clear

World � P(�) Induced facts

DepHead(alice),

mentors(alice, charlie)

0.9 ⋅ (0.4) = 0.36 Professor(alice),

AcadSup(alice)

DepHead(alice) 0.9 ⋅ (1 − 0.4) = 0.54 Professor(alice)

mentors(alice, charlie) (1 − 0.9) ⋅ 0.4 = 0.04 ∅

∅ (1 − 0.9) ⋅ (1 − 0.4) = 0.06∅

1  ProbLog is available for free online at https​://dtai.cs.kuleu​ven.be/
probl​og/.

https://dtai.cs.kuleuven.be/problog/
https://dtai.cs.kuleuven.be/problog/
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2.1 � Ontologies in ELHdr

Fix disjoint countably infinite sets of concept and role names 
NC and NR , respectively. Then EL-concepts are formed accord-
ing to the syntax rule

where A ∈ NC and r ∈ NR . An ELHdr -ontology (hereafter 
ontology) is a set of concept inclusions C ⊑ D , role inclu-
sions r ⊑ s , domain restrictions ���(r) ⊑ C , and range 
restrictions ���(r) ⊑ C , where C and D are EL-concepts and 
r, s ∈ NR . An ABox is a finite set of concept assertions A(a) 
and role assertions r(a, b) where A ∈ NC , r ∈ NR , and a, b 
range over a countably infinite set of individual names NI . 
We denote with ���(A) the set of all individual names that 
occur in A . The semantics of ELHdr is defined as usual in 
terms of interpretations I = (ΔI, ⋅I) ; we elide a full descrip-
tion here and instead refer the reader to Baader et al. [4] for 
details. We use standard terminology, e.g., I  is a model of T  
or A if it satisfies all the concept and role inclusions as well 
as domain and range restrictions in T  , or all the assertions 
in A , respectively.

2.2 � Ontology‑Mediated Querying over Probabilistic 
Data

Let NV denote a countably infinite set of variables disjoint 
from NI . Then NT = NV ∪ NI forms the set of terms. A con-
junctive query (CQ) � is a first-order formula

where � and � are tuples of variables in NV , and �(�, �) is 
a conjunction of atoms over signature NC ∪ NR using terms 
from NT  , but only variables from � and � . We drop the 
free variables � of �(�) whenever no confusion can arise. 
An ontology-mediated query (OMQ) is a pair (T,�) of an 
ontology T  and a CQ � . Given an ABox A , and an OMQ 
(T,�) , we say that a tuple � of individuals from A is a cer-
tain answer for  (T,�) over A if (T,A) ⊧ 𝜑(�) , that is, every 
model I  of T  and A satisfies I ⊧ 𝜑(�) . The set of all certain 
answers to (T,�) is denoted by ����A(T,�).

Following [12], we use assertion-independent probabil-
istic ABoxes (ipABoxes) to model uncertain data. Formally, 
an ipABox is a pair (A, p) where A is a classical ABox and 
p ∶ A → [0, 1] assigns a probability to every assertion in A . 
An ipABox (A, p) induces a distribution p(⋅) over possible 
ABoxes A′ ⊆ A , which is defined by taking

for every A′ ⊆ A . The probability of an answer  � to an 
OMQ (T,�) over an ipABox (A, p) is then defined as:

C∶∶=⊤ | A | C ⊓ C | ∃r.C

�(�) = ∃�.�(�, �),

(6)p(A�) = Π�∈A�p(�) ⋅ Π�∈A⧵A� (1 − p(�)),

The prime inference task here is to compute answer prob-
abilities, that is, given an ipABox (A, p) and an OMQ (T,�) , 
compute PrA,p(T,�, �) for all answer candidates �.

Coming back to the example from the introduction, the 
set of probabilistic facts corresponds to the ipABox (A, p) 
where

and

If we denote with T  the ontology from the introduction and 
let �(x) be the query AcademicSupervisor(x) , we have:

2.3 � Probabilistic Logic Programs

We introduce a variant of probabilistic logic programs that 
is sufficient for our purposes, though some systems support 
more features. A probabilistic logic program (PLP) is a tri-
ple (F, p,Π) where F  is a set of facts, p ∶ F → [0, 1] assigns 
a probability to every fact, and Π is a stratified logic program 
consisting of rules of the form:

where H and all Bi are relational atoms over terms. The 
semantics of PLPs (F, p,Π) is defined as follows. The pair 
(F, p) induces a probability distribution p(⋅) over subsets 
F

′ ⊆ F  just as in Eq.  (6). Moreover, given a set of facts 
F  and a set of rules Π , we denote with Π(F) the minimal 
supported model of F ∪ Π , obtained via the iterated fixed 
point construction of  [1]. The prime inference task for PLPs 
is marginal inference, that is, given a PLP (F, p,Π) and a 
distinguished goal predicate G, compute the probability of 
all ground facts G(�) under (F, p,Π) , which is defined as:

3 � Our Tool: onto2problog

We have implemented a tool, onto2problog, that ena-
bles the use of probabilistic logic programming infer-
ence methods for computing answer probabilities of 

PrA,p(T,𝜑, �) =
∑

A
�⊆A,�∈����A� (T,𝜑)

p(A�).

A = {DepartmentHead(alice), mentors(alice, charlie)}

p(DepartmentHead(alice)) = 0.9

p(mentors(alice, charlie)) = 0.4

PrA,p(T, AcademicSupervisor(x), alice) = .36.

H ← B1,… ,Bm,¬Bm+1,… ,¬Bn

PrF,p,Π(G(�)) =
∑

F
�⊆F,G(�)∈Π(F�)

p(F�).
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ontology-mediated queries over ipABoxes. The overall 
architecture of the inference pipeline supported by our tool 
is depicted in Figure 1. The input of the query answering 
task consists of the ontology-mediated query (a pair com-
prising a conjunctive query � and an ELHdr-ontology T  ), 
and the probabilistic data given by an ipABox (A, p) . Our 
tool processes only the ontology-mediated query (T,�) and 
outputs a stratified logic program ΠT,� with a distinguished 
goal predicate G, which is equivalent to (T,�) in the fol-
lowing sense:

(∗) for every ipABox (A, p) and answer candidate � , we 
have 

 where A′ is essentially A in a slightly different represen-
tation (described below).

For more concrete information on the structure of ΠT,� , 
we again refer the reader to our accompanying technical 
paper [20]. Here, we only stress that its size is polynomial 
in the sizes of T  and � , that the arity of the relation symbols 
used is bounded by the arity of the query, and that it has only 
two strata. The use of negation is required to exclude some 
spurious answers.

We will next give some details on our system and dem-
onstrate its use with the example given earlier in the intro-
duction. We have implemented onto2problog as a Python 
library, so that it can be called in a flexible and modular way. 
The ontology is specified in the OWL 2 ontology language 
(encoded in the standard RDF/XML format [17]), and the 
query is specified in a simple predicate logic-style syntax.

For example, the fragment of our ontology T  expressing 
the knowledge that all department heads are professors could 
be represented as follows in RDF/XML: 

PrA,p(T,�, �) = PrA�,p,ΠT,�
(G(�)),

Now suppose we wish to use this ontology and pose the 
query earlier in the paper asking for all department heads 
mentored by someone. Then we may specify the query � in 
our Python script in the following way: 

 We can then load in the relevant ontology T  : 

 Given T  and � , onto2problog can then be used to com-
pute the rewriting ΠT,� as described above (after first nor-
malizing the ontology): 

 We are now ready to pair the rewriting with an ipABox 
(A, p) . As mentioned above, the rewriting relies on a certain 
representation of the ABox which we detail next. We rep-
resent ipABoxes as strings of probabilistic facts over two 
fixed predicate names concept and role. For example, 
the facts DepartmentHead(alice) and mentors(alice, charlie) 
from earlier, along with their probabilities, are specified as 
the following string: 

 Note that both concept, role, and individual names 
become constants under this representation. Putting it all 
together, we get our final probabilistic logic program with 
the distinguished query predicate q (the name of our query 
above): 

 We may now pass this to ProbLog to do the “heavy lift-
ing” of computing the marginal probabilities for the distin-
guished predicate q in the constructed PLP, producing a list 
of tuples together with their respective probabilities: 

 By construction, and in particular because of property (∗) 
above, the results returned are the answers to the original 
ontology-mediated query task.

ProbLog supports marginal inference via a variety of 
different algorithms based on knowledge compilation [6], 
for example, to d-DNNF and SDD. It also supports forward 

Fig. 1   An overview of the the inference pipeline supported by onto-
2problog 
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inference in a process known as TP-compilation [22]. Using 
ProbLog’s Python interface, the user may select which 
inference method they wish to use in order to evaluate their 
query.

Our tool together with some documentation and an exam-
ple is available online at http://www.infor​matik​.uni-breme​
n.de/~jeanj​ung/onto2​probl​og.html.

4 � Evaluation

We evaluated onto2problog on a probabilistic version of 
the Lehigh University Benchmark (LUBM) [9]. LUBM is 
a benchmark for measuring the performance of semantic 
knowledge base systems in a consistent manner, comprising 
an ontology, data generation tool, and a set of test queries. 
For the purposes of our experiments, we dropped transitive 
and inverse role declarations from the ontology in order to 
obtain a valid ELHdr-ontology. Also queries 11, 12, and 13 
were deliberately omitted from the test queries as they are 
specifically designed to test reasoning with inverse and tran-
sitive role declarations. We set the parameters of the origi-
nal data generation tool to generate an ABox of cardinality 
15189. Of this, 12260 statements were role assertions and 
the remainder were concept assertions.

We wrote scripts to transform the assertions generated 
by the data generation tool to probabilistic facts in Prob-
Log. As the data from the tool is deterministic by default, 
we enriched the output by associating each ABox asser-
tion � with an indepedent, uniformly drawn probability 
p(�) ∼ U(0, 1) to obtain an ipABox. Finally, using our tool, 
we computed the rewritings of each of the LUBM queries 

with respect to the ontology. In the second step we used 
ProbLog to compute the query probabilities.

We used two different inference methods supported by 
ProbLog: (1) the “classic” ProbLog inference approach of 
cycle-breaking and compilation to sentential decision dia-
grams (SDDs) [21], and (2) TP-compilation to SDDs, which 
avoids the cycle-breaking step altogether through forward 
inference [22]. Regardless of the method used, ProbLog first 
computes the ground program relevant to the query, that is, 
it transforms the probabilistic logic program into one using 
only ground atoms (while returning the same probabilities). 
We refer to this first phase as the grounding step. We refrain 
from giving more details on the methods (1) and (2) here 
and instead refer the reader to the aforementioned papers. 
The runtimes of the computation, divided into the relevant 
steps, is shown in the left side of Table 2.

We compared onto2problog to an alternative approach 
to query answering, based on first-order rewritings. Infor-
mally, first-order rewritings transform the input ontology-
mediated query (T,�) into an equivalent first-order query 
�T  (or equivalently, a non-recursive datalog program). 
Although first-order rewritings have been used mainly in 
the classical, that is, non-probabilistic, ontology-mediated 
query answering, it has been observed that they remain 
valid also in the probablistic version OMQPD [12]. In the 
case of the ontology language EL , first-order rewritings 
are well-studied and it is known that they do not always 
exist [11]. Thus, they do not provide a complete tool for 
OMQPD. However, LUBM does not use all features pro-
vided by ELHdr . In fact, when dropping the role transitiv-
ity axioms, it is essentially formulated in a variant of DL-
Lite, which implies that for all ontology-mediated queries 
based on LUBM, first-order rewritings do exist [2]. We 

Table 2   Grounding and compilation runtime for the Lehigh University Benchmark queries

All times are in seconds. “Timeout” indicates that the procedure took over ten minutes to run

onto2problog First-order rewriting

Classic inference Classic inference

Query Grounding T
P
-compilation Cycle-breaking Compilation Grounding T

P
-compilation Cycle-breaking Compilation

1 0.00 0.00 0.00 0.00 0.04 0.05 0.00 0.00
2 70.14 5.17 0.00 0.00 28.82 0.11 0.00 0.00
3 0.03 0.00 0.00 0.00 0.59 0.67 0.00 0.00
4 25.60 5.73 0.02 0.03 0.88 0.95 0.02 0.03
5 28.24 28.04 1.60 2.53 2.39 5.66 0.40 1.05
6 25.61 71.23 2.92 6.30 4.09 50.12 2.23 5.67
7 78.49 6.26 0.04 0.05 4.53 5.44 0.02 0.05
8 30.24 92.90 3.46 7.47 6.19 71.90 2.54 6.91
9 Timeout – – – Timeout – – –
10 27.28 4.85 0.00 0.00 4.35 4.63 0.01 0.03
14 0.32 0.12 0.01 0.03 0.20 0.13 0.00 0.00

http://www.informatik.uni-bremen.de/%7ejeanjung/onto2problog.html
http://www.informatik.uni-bremen.de/%7ejeanjung/onto2problog.html
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therefore manually computed these rewritings and evalu-
ated them using ProbLog as well. The results of this can 
be found in the right side of Table 2.

Interestingly, we see that most of the time is spent in the 
grounding step rather than the knowledge compilation step 
for each query. These steps correspond to the (determin-
istic) query answering phase and probability computation 
phase, respectively. This means that a large amount of time 
is taken in the computation of the relevant ground program, 
which is based on SLD-resolution. As SLD-resolution is 
theoretically not a hard task, we believe this to be the result 
of inefficiencies in ProbLog’s implementation of grounding 
which become apparent when dealing with large programs 
like the ones here.

Moreover, the classic ProbLog inference method of cycle-
breaking and compilation to SDDs consistently outperforms 
TP-compilation. We also observe that first-order rewritings 
seem to have somewhat better inference times overall, as 
a trade-off for the incompleteness of this approach. We 
conclude that in practice, it may be best to first test the 
first-order rewritability of the query before resorting to the 
complete approach provided by onto2problog as a second 
option.

Finally, to get an indication of how our method scales, 
we examined the total inference time on different ipABox 
sizes for a subset of the queries in Table 2 for which infer-
ence appeared non-trivial. The total inference time here is 
the sum of grounding, cycle-breaking, and SDD compilation 
time. The results are shown in Fig. 2. We observe that the 
runtime increases with ipABox size, but the exact nature 
of the relationship appears to be dependent on the query in 
question: the increase is much steeper for query 8 than query 
5, for example.

5 � Conclusion and Future Work

We have presented our tool onto2problog for answering 
queries over incomplete probablistic data in the presence 
of ontologies formulated in the description logic ELHdr . 
The evaluation shows potential for our tool to be used in at 
least small-scale scenarios. At the same time, it shows that 
the grounding step can be unexpectedly time-consuming. 
While it is known that grounding can be expensive in logic 
programming (see for instance [13] in the context of answer 
set programming), the PLP ΠT,� we produce should not be 
“dangerous” in this sense. We therefore conclude that this is 
a bottleneck in ProbLog’s implementation, which indeed has 
been addressed in very recent work [7]. It would be interest-
ing to combine their results with our efforts.

Beyond these improvements to the grounding step, we 
would like to extend our tool in three directions. First, we 
want to integrate first-order rewritings into our program 
natively, which on the one hand exhibited better perfor-
mance in some of our experiments, but on the other hand 
are incomplete in general. Second, we want to investigate 
whether our approach can be extended to different ontol-
ogy languages, such as those in the Datalog± family [5]. 
Finally, it would be interesting to see whether other capa-
bilities of ProbLog, such as learning, can be transferred to 
the OMQPD setting.
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