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Abstract
Modal separability for modal fixpoint formulae is the problem to decide for two given modal fixpoint
formulae φ,φ′ whether there is a modal formula ψ that separates them, in the sense that φ |= ψ and
ψ |= ¬φ′. We study modal separability and its special case modal definability over various classes of
models, such as arbitrary models, finite models, trees, and models of bounded outdegree. Our main
results are that modal separability is PSpace-complete over words, that is, models of outdegree ≤ 1,
ExpTime-complete over unrestricted and over binary models, and 2-ExpTime-complete over models
of outdegree bounded by some d ≥ 3. Interestingly, this latter case behaves fundamentally different
from the other cases also in that modal logic does not enjoy the Craig interpolation property over
this class. Motivated by this we study also the induced interpolant existence problem as a special
case of modal separability, and show that it is coNExpTime-complete and thus harder than validity
in the logic. Besides deciding separability, we also investigate the problem of efficient construction of
separators. Finally, we consider in a case study the extension of modal fixpoint formulae by graded
modalities and investigate separability by modal formulae and graded modal formulae.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Modal Logic, Fixpoint Logic, Separability, Interpolation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.63

1 Introduction

For given logics L,L+, the L-separability problem for L+ is to decide given two L+-formulae
φ,φ′ whether there is an L-formula ψ that separates φ and φ′ in the sense that φ |= ψ and
ψ |= ¬φ′. Obviously, a separator can only exist when φ and φ′ are mutually exclusive, and
the problem is only meaningful when L is less expressive than L+. Intuitively, a separator
formulated in a “simpler” logic L explains a given inconsistency in a “complicated” logic L+.
Note that, for logics L+ closed under negation, L-separability generalizes the L-definability
problem for L+: decide whether a given L+-formula is equivalent to an L-formula. Indeed,
φ ∈ L+ is equivalent to an L-formula iff φ and ¬φ are L-separable. Since separability is more
general than definability, solving it requires an even better understanding of the logics under
consideration. Both separability and definability are central problems with many applications
in computer science. As seminal work let us only mention definability and separability of
regular word languages by first-order logic [26, 29, 9].

In this paper we study definability and separability of formulae of the modal µ-calculus
µML [27, 20] by formulae in propositional modal logic ML. µML is the extension of ML with
fixpoints that encompasses virtually all specification languages such as PDL [12] and LTL
and CTL [3]. Let us consider an example.

▶ Example 1. Consider the following properties P1, P2, P3 of vertex-labelled trees:
P1: there is an infinite path starting in the root on which each point satisfies a;
P2: on every path there are only finitely many points satisfying a;
P3: on every path at most two points satisfy a.

The properties are expressible in µML but not in ML, and both P1, P2 and P1, P3 are mutually
exclusive. The properties P1, P3 are separated by the ML-formula ψ = a ∧3(a ∧3a) which

© Jean Christoph Jung and Jędrzej Kołodziejski;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyen Kim Thang; Article No. 63; pp. 63:1–63:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jean.jung@tu-dortmund.de
mailto:jedrzej.kolodziejski@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.STACS.2025.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


63:2 Modal Separation of Fixpoint Formulae

all models words binary trees d-ary trees, d ≥ 3
ML-definability ExpTime [24] PSpace ExpTime [24] ExpTime [24]
ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.
ML interpolant existence always always always coNExpTime
Table 1 Overview of our results. All complexity results are completeness results.

expresses that there is a path starting with three points satisfying a. On the other hand,
no ML-formula separates P1, P2. The intuitive reason for this is that any ML-formula ψ

only sees trees up to depth |ψ|, and one can find two trees with properties P1, P2 which
nonetheless look the same up to depth |ψ|. ◀

We explore the definability and separability problems over several classes of models
relevant for computer science: all models, words, trees of bounded or unbounded outdegree;
as well as restrictions of all these classes to finite models. On top of analyzing the decision
problems, we also address the problem of constructing efficient definitions and separators
whenever they exist. The starting point for our research is the seminal paper of Otto [24],
where he solves modal definability over models of bounded and unbounded outdegree. In
this paper, we continue this line of research and establish a fairly complete and interesting
picture. Table 1 summarizes our results. We now explain its content further.

The first line essentially repeats Otto’s results; we only add the observation that ML-
definability over words is PSpace-complete. Interestingly, separability is substantially more
difficult. The case of words is the easiest one, both in terms of computational complexity
and required arguments. Next come the cases of binary and of unrestricted trees. These two
classes possess some nice structural properties which (although true for different reasons)
enable a common algorithmic treatment. Finally, the cases of trees with outdegree bounded
by a number d ≥ 3 enter the stage. These trees lack the good properties essential for previous
constructions which results in higher computational complexity. The hardness result for
d ≥ 3 is interesting for two reasons. First, as it is entirely standard to encode trees of higher
outdegree into binary ones, one could expect the ternary (and higher) case to have the
same complexity as the binary one. And second, even though there are known cases when
separation is provably harder than definability (regularity of visibly pushdown languages is
decidable [23, Theorem 19] but regular separability thereof is not [19, Theorem 2.4]), to the
best of our knowledge our results are the only such case known in logic.

The complexity landscape for deciding separability is also reflected in the maximal sizes of
the separators that we construct. Relying on the well-known connection of µML to automata,
we provide effective constructions for the cases of all models, words, and binary trees. It
is worth mentioning that equally effective constructions for definability over all models are
given in [22], but they do not work for separability. The ternary case follows from a general
argument. Our construction of separators over words is optimal. Under mild assumptions
(there are at least two modalities) the constructions over binary and over unrestricted trees
are optimal as well, but we leave it open whether these assumptions are needed for the lower
bounds. In the case of ternary and higher outdegree trees we only conjecture optimality of
the constructed separators.

Finally, we observe that ML lacks the Craig interpolation property over trees of outdegree
bounded by d ≥ 3. Recall that a Craig interpolant for φ |= φ′ in some logic L is a formula
ψ ∈ L only using the common symbols of φ and φ′ and such that φ |= ψ |= φ′. A logic
satisfies the Craig interpolation property (CIP) if a Craig interpolant of φ |= φ′ always exists.
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It is known that ML enjoys CIP over all models and over words [15] and it follows from
our techniques that this transfers to binary trees. In contrast and as mentioned above, over
ternary and higher-arity trees ML lacks the CIP. It is worth mentioning that modal logic over
frames of arity bounded by some d has been studied under the name K⊕altd [4]. Our results
imply that K⊕ altd enjoys CIP iff d ≤ 2. Motivated by the lack of CIP over higher-arity
trees, we study the induced interpolant existence problem – determining whether two given
ML-formulae φ,φ′ admit a Craig interpolant – as a special case of separability. We show it to
be coNExpTime-complete over higher arity trees, and thus harder than validity. Interpolant
existence has recently been studied for other logics without CIP [18, 1].

As an application of our results for d-ary trees with d ≥ 3 we additionally present a case
study: separability in the graded setting in which we allow counting modalities saying “there
are at least k children such that [...]” [11]. Counting modalities are a standard extension
of modal logic that is especially relevant in applications in knowledge representation for
conceptual modeling [2]. We show that ML-separability of graded µML is 2-ExpTime-
complete, while it is ExpTime-complete if we allow counting modalities also in the separator.
The intuitive reason for the hardness in the former case is that trees of bounded arity are
definable in graded µML. This former case is also related with a recent study about separating
logics supporting counting quantifiers by logics without these [21].

It is worth to mention that ML-definability of µML-formulae generalizes the boundedness
problem which asks whether a formula with a single fixpoint is equivalent to a modal formula.
Boundedness has been studied for other logics such as monadic-second order logic [6],
datalog [16], and the guarded fragment of first-order logic [5]. Our paper is an extension of
the preliminary paper [17].

The paper is organized as follows. After this introduction 1, we set notation and recall
basic facts in the preliminary Section 2. Next, we introduce some topic-specific terminology,
discuss a relevant construction of Otto, and solve the case of all models in Section 3. In the
following Sections 4 and 5 we deal with unary and binary trees, and in Section 6 we solve the
most challenging case of trees of outdegree bounded by d ≥ 3. Section 7 applies our results to
the case with graded modalities. The last Section 8 contains conclusions and final remarks.

2 Preliminaries

We recall the main notions about modal logic ML and the modal µ-calculus µML. For the
rest of this paper fix disjoint, countably infinite sets Prop of atomic propositions and Var of
variables. The syntax of µML is given by the rule

φ ::= τ | ¬τ | φ ∨ φ | φ ∧ φ | 3φ | 2φ | x | µx.φ | νx.φ

where τ ∈ Prop and x ∈ Var. We assume that formulae of µML are in a normal form such that
every x ∈ Var appears at most once in a formula, and if it does appear then its appearance
has a unique superformula ψ beginning with µx or νx. Modal logic ML is defined as the
fragment of µML with no fixpoint operators µ and ν nor variables. Both in ML and µML, we
use abbreviations like ⊤ (for a ∨ ¬a for some a ∈ Prop), 3nφ (for a formula 3 . . .3φ with n
leading 3’s), and ¬φ. We denote with sig(φ) the set of propositions that occur in φ, and
recall that the modal depth of an ML formula is the maximal nesting of 3,2. With MLn we
denote the class of all ML-formulae of modal depth at most n, and with MLn

σ we denote its
subclass restricted to signature σ. The size |φ| of a formula φ is the length of φ represented
as a string. This choice of the simplest possible measure of size does not matter for most of
our results. We will briefly discuss alternative notions of size in the concluding Section 8.

STACS 2025



63:4 Modal Separation of Fixpoint Formulae

Both ML and µML are interpreted in pointed Kripke structures. More formally, a
model M is a quadruple M = (M,vI ,→, val) consisting of a set M called its universe, a
distinguished point vI ∈ M called the root, an accessibility relation → ⊆ M ×M , and a
valuation val : M → P(Prop).

The semantics of µML can be defined in multiple equivalent ways. The one most convenient
for us is through parity games (see [32] for an introduction). Given a modelM and a formula
φ ∈ µML we define a semantic game G(M, φ) played between players ∃ve and ∀dam. The
positions are M ×SubFor(φ). The moves depend on the topmost connective. From a position
of the shape (v, ψ ∨ ψ′) or (v, ψ ∧ ψ′) it is allowed to move to either (v, ψ) or (v, ψ′). From
(v,3ψ) and (v,2ψ) the allowed moves lead to all (w,ψ) such that v → w. In position
(v, τ) or (v,¬τ) the game stops and ∃ve wins iff v satisfies the formula component τ or ¬τ ,
respectively. From (v, µx.ψ) and (v, µx.ψ) the game moves to (v, ψ), and from (v, x) to (v, ψ)
where ψ is the unique superformula of x beginning with µx or νx. ∃ve owns positions whose
formula component has ∨ or 3 as the topmost connective and ∀dam owns all other positions.
∃ve wins an infinite play π if the outermost subformula seen infinitely often in π begins with
ν. We say that M, v satisfies φ and write M, v |= φ if ∃ve wins the game G(M, φ) from
position (v, φ). Since M is by definition pointed, we abbreviate M, vI |= φ with M |= φ.

The same symbol denotes entailment: φ |= ψ means that every model of φ is a model of
ψ. In the case only models from some fixed class C are considered we talk about satisfiability
and entailment over C. Let L be a subset of µML such as ML or MLn

σ. If two models M
and N satisfy the same formulae of L then we call them L-equivalent and write M≡L N .

In the paper we will study models of bounded and unbounded outdegree. The outdegree
of a point w ∈ M in a model M = (M,vI ,→, val) is the number of successors of w in the
underlying directed graph GM = (M,→). We say that M has finite outdegree if every point
has finite outdegree and bounded outdegree if there is a finite uniform upper bound d on the
outdegree of its points. In the latter case, we will call M d-ary, and binary or ternary if
d = 2 or d = 3. If d = 1, then we call M a word. A d-ary model is full if each of its nodes is
either a leaf (i.e. has no children) or has precisely d children. A modelM is a tree if GM is a
(directed) tree with root vI . We denote with Td the class of all d-ary tree models. Both ML
and µML are invariant under bisimulation, and every (d-ary) model is bisimilar to a (d-ary)
tree. Hence, we do not loose generality by only looking at tree models.

A prefix of a tree is a subset of its universe closed under taking ancestors. When no
confusion arises we identify a prefix N ⊆M with the induced subtree N of M that has N
as its universe. The depth of a point is the distance from the root. The prefix of depth n

(or just n-prefix) is the set of all points at depth at most n and is denoted by M|n
(and the

corresponding subtree by M|n
).

Bisimulations

We define bisimulations and bisimilarity for trees, assuming for convenience that bisimulations
only link points at the same depth. LetM,M′ be trees and Z ⊆M ×M ′ a relation between
M and M ′ that relates only points of the same depth. Then, Z is a bisimulation between M
and M′ if it links the roots vIZv

′
I , and for every wZw′ the following conditions are satisfied:

(atom) val(w) = val′(w′),
(forth) for every v ∈M with w → v there is a v′ ∈M ′ with w′ → v′ and vZv′, and
(back) for every v′ ∈M ′ with w′ → v′ there is a v ∈M with w → v and vZv′.
A functional bisimulation (also known as bounded morphism) is a function whose graph is a
bisimulation. If Z is a functional bisimulation fromM toM′ then we write Z :M bis→M′ and
callM′ a bisimulation quotient ofM. The bisimilarity quotient ofM is a quotientM′ ofM
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such that if Z ′ :M′ →M′′ then M′ =M′′. It follows from analogous results for arbitrary
models that every tree M ∈ Td has a unique (up to isomorphism) bisimilarity quotient
M′ ∈ Td and that two trees are bisimilar iff their bisimilarity quotients are isomorphic.

Further, for every n ∈ N and every subset σ ⊆ Prop of the signature we consider a
restricted variant of bisimulations called (σ, n)-bisimulations. In a (σ, n)-bisimulation the
atom condition is only checked with respect to σ and the back and forth conditions only for
points at depth smaller than n. Formally, a relation Z ⊆ M ×M ′ is a (σ, n)-bisimulation
if it is a bisimulation between the n-prefixes of the σ-reducts of M,M′. We call a (σ, n)-
bisimulation between M,M′ a (σ, n)-isomorphism if it is bijective on the n-prefixes of
M,M′. We write M -n

σ M′ if there exists a (σ, n)-bisimulation between M and M′ and
M∼=n

σ M′ if there is a (σ, n)-isomorphism between them. Crucially, over every class C of
models and for every finite σ the equivalences ≡MLn

σ
and -n

σ coincide, for every n.

Automata

We exploit the well-known connection of µML and automata that read tree models. A
nondeterministic parity tree automaton (NPTA) is a tuple A = (Q,Σ, qI , δ, rank) where Q is
a finite set of states, qI ∈ Q is the initial state, Σ = P(σ) for some finite set σ ⊆ Prop, rank
assigns each state a priority, and δ is a transition function of type:

δ : Q× Σ→ P(Q≤d),

where Q≤d denotes the set of all tuples over Q of length at most d. A run of A on a tree
M is an assignment ρ : M → Q sending the root of the tree to qI and consistent with
δ in the sense that (ρ(v1), ..., ρ(vk)) ∈ δ(ρ(v), val(v) ∩ σ) for every point v with children
v1, ..., vk. On occasion when considering trees of unbounded outdegree we will use automata
with transition function of type δ : Q × Σ → P(P(Q)). Then, consistency of ρ with δ

means that {ρ(v′) | v′ ∈ V } ∈ δ(ρ(v), val(v) ∩ σ) for every v with a set V of children. In
either case, we call the run ρ accepting if for every infinite path v0, v1 . . . in M the sequence
rank(ρ(v0)), rank(ρ(v1)), . . . satisfies the parity condition. We writeM |= A in case A has an
accepting run on M. An automaton that is identical to A except that the original initial
state is replaced with q is denoted A[qI ←[ q]. The size of an automaton A is the number of
its states and is denoted by |A|.

An NPTA A is equivalent to a formula φ ∈ µML over a class C of trees when M |= φ iff
M |= A for every tree M∈ C. We rely on the following classical result (see for example the
discussion in [31] and the well-presented Dealternation Theorem 5.7 in [7]):

▶ Theorem 2. For every µML-formula φ and class C of trees, we can construct an NPTA
with exponentially many states equivalent to φ over C. The construction takes exponential
time when C ⊆ Td for some d, and doubly exponential time in the unrestricted case.

3 Foundations of Separability

We start with recalling the notion of separability and discuss some of its basic properties.

▶ Definition 3. Assume a subset L of all µML formulae. Given φ,φ′ ∈ µML, an L-separator
of φ,φ′ is a formula ψ ∈ L with φ |= ψ and ψ |= ¬φ′. If additionally sig(ψ) ⊆ σ for some
signature σ, ψ is called an Lσ-separator.

The L-separability problem is to determine, given formulae φ,φ′ ∈ µML and a signature σ, if
they admit an Lσ-separator ψ. L-definability is the special case of L-separability in which

STACS 2025



63:6 Modal Separation of Fixpoint Formulae

φ′ = ¬φ, since an L-separator of φ,¬φ is equivalent to φ. All notions can be relativized to a
class C of models by considering entailment over that class. We investigate ML-separability
and ML-definability over different classes of models. The reader may have expected the
problems to be defined without restrictions on σ, but in fact such versions of the problems
are special instances of our problems with σ = sig(φ) ∪ sig(φ′). Conversely, all lower bounds
already hold for such special instances.

We start with observing that, by the tree model property and the finite model property
of µML, ψ is an MLσ-separator of φ,φ′ (over all models) iff ψ is an MLσ-separator of φ,φ′

over trees iff ψ is an MLσ-separator of φ,φ′ over finite models. Thus, separability coincides
over all these classes. Moreover, with the help of the µML-formula θ∞ = νx.3x expressing
the existence of an infinite path originating in the root, ML-separability over finite trees
reduces to ML-separability over all models. More formally:

▶ Lemma 4. Let φ,φ′ ∈ µML and ψ ∈ ML. Then ψ is an MLσ-separator of φ,φ′ over finite
trees iff ψ is an MLσ-separator of φ ∧ ¬θ∞, φ

′ ∧ ¬θ∞. This is also true inside Td, for d ∈ N.

This lemma allows us to transfer all upper bounds obtained in the paper also to the restrictions
of the classes to finite models. The lower bounds do not follow from this lemma, but analyzing
the proofs yields that they actually work as well. Thus, in the rest of the paper we focus on
the classes of all models and Td, for d ∈ N.

The starting point for the technical developments in the paper are model-theoretic char-
acterizations for separability. Similar to what has been done in the context of interpolation,
see for example [28], they are given in terms of joint consistency, which we introduce next.
Let R be a binary relation on some class of models, such as (σ, n)-isomorphism ∼=n

σ or
MLn

σ-equivalence ≡MLn
σ
. We call two formulae φ,φ′ joint consistent up to R (in short joint

R-consistent) if there are models M |= φ and M′ |= φ′ with R(M,M′). For technical
reasons we will sometimes also talk about joint consistency of automata A,A′ in place of
formulae φ,φ′. Joint R-consistency over a class C of models is defined by only looking at
models from C. Clearly, if R′ ⊆ R and C′ ⊆ C then joint R′-consistency over C′ implies
joint R-consistency over C. We use the following standard equivalence:

φ,φ′ are not MLn
σ-separable over C ⇐⇒ φ,φ′ are joint -n

σ-consistent over C. (Base)

for every φ,φ′ ∈ µML, n ∈ N, finite σ, and class C. The implication from right to left is
immediate. The opposite one follows from the observation that for every n ∈ N and finite σ
there are only finitely many equivalence classes of -n

σ, and each such class is fully described
with a single modal formula.

Let us illustrate how Equivalence (Base) is used to solve ML-separability. Let φ1 and φ2 be
µML-formulae expressing the respective properties P1 and P2 from Example 1. Let M be an
infinite path in which every point satisfies a, and letMn be a finite path of length n in which
every point satisfies a. Then, for each n the models M,Mn witness joint -n-consistency of
φ1, φ2. By Equivalence (Base) this means that φ1, φ2 are not MLn-separable for any n, and
thus not ML-separable at all.

Definability is a special case of separability. Since the tools used for solving definability
are a starting point for our work, we recall them now.

Modal Definability: A Recap

In his seminal paper [24] Otto showed that ML-definability of µML-formulae is ExpTime-
complete over all models and over Td for every d ≥ 2.
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▶ Theorem 5. [24, Main Theorem and Proposition 5] Over the class of all models, as well
as over Td for every d ≥ 2, ML-definability of µML-formulae is ExpTime-complete.

We start by recalling and rephrasing Otto’s construction and fixing a small mistake in the
original proof. The lower bound follows by an immediate reduction from satisfiability of
µML-formulae. We look at the upper bound. The first step is the following lemma, which is
the heart of [24, Lemma 2].

▶ Lemma 6. For every φ ∈ µML and n, d ∈ N the following are equivalent:
1. φ,¬φ are joint -n

σ-consistent over Td.
2. φ,¬φ are joint ∼=n

σ-consistent over Td.
The lemma is true, but its proof in [24] is mistaken. The problem there is that the construction
duplicates subtrees and hence may turn d-ary models into ones with outdegree greater than d.
We present an easy alternative proof.

Proof. Only the implication 1 ⇒ 2 is nontrivial. To prove it assume d-aryM |= φ, N |= ¬φ
with M -n

σ N and assume towards contradiction that φ,¬φ are not ∼=n
σ-consistent over Td.

We haveM∼=n
σ Mσ

|n
-M′ whereMσ is the σ-reduct ofM, andM′ ∈ Td is the bisimilarity

quotient of its n-prefix Mσ
|n

. By the assumption that φ,¬φ are not joint ∼=n
σ-consistent,

M |= φ implies Mσ
|n
|= φ. By invariance of φ under -, this in turn implies M′ |= φ. We

construct N ′ |= ¬φ symmetrically. By definition, M -n
σ N means that Mσ

|n
and N σ

|n
are

bisimilar, which is equivalent to saying that their bisimilarity quotients M′ and N ′ are
isomorphic, and hence (σ, n)-isomorphic. Thus,M′,N ′ witness joint ∼=n

σ-consistency of φ,¬φ
over Td, a contradiction. ◀

Using automata-based techniques we to decide if Item 2 in Lemma 6 holds for all n.

▶ Proposition 7. For every parity automata A,A′ and d ∈ N: A,A′ are joint ∼=n
σ-consistent

over Td for all n ∈ N iff A,A′ are joint ∼=m
σ -consistent over Td for m = |A|+ |A′|+ 1. The

latter condition can be checked in time polynomial in |A|+ |A′|.

Proof. (Sketch) Due to well-known relativization techniques we do not loose generality by
only running A,A′ on full d-ary trees with no leaves. Let L be a language of finite full d-ary
trees over σ such that M ∈ L iff M is a prefix of a reduct of a model of A. Let L′ be an
analogous language for A′. The tallness of a finite tree is the minimal distance from the root
to a leaf. Observe that A,A′ are ∼=n

σ-consistent over Td iff L ∩ L′ contains a tree of tallness
n. Thus, it suffices to check if L ∩ L′ contains trees of arbitrarily high tallness. To that
end construct an automaton B recognizing L ∩ L′ of size polynomial in |A|+ |A′|. An easy
pumping argument shows that the language L ∩ L′ of B contains trees of arbitrarily high
tallness iff it contains a tree of tallness m = |B|+ 1. To test the latter condition it is enough
to inductively compute a sequence S1 ⊇ S2 ⊇ ... ⊇ S|B|+1 of subsets of states of B, where Si

is the set of all states q such that B[qI ← [ q] recognizes a tree of tallness at least i. ◀

We are ready to solve ML-definability over Td in exponential time. Assume µML-formula
φ. For every n, we know by Equivalence (Base) that φ is equivalent over Td to some ψ ∈ MLn

σ

iff φ,¬φ are not joint -n
σ-consistent over Td. By Lemma 6 this is equivalent to the lack of

joint ∼=n
σ-consistency of φ,¬φ over Td. By Theorem 2 we can compute exponentially-sized

automata A, A′ equivalent to φ and ¬φ over Td. It follows that φ is not MLσ-definable
over Td iff A,A′ are joint ∼=n

σ-consistent over Td for every n. The last condition is decided
using Proposition 7. The runtime of our algorithm is polynomial in |A| + |A′|, and thus
exponential in |φ|. This proves the part of Theorem 5 about Td. The remaining part
concerning unrestricted models is a special case of Theorem 9, which we will prove next.
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Modal Separation: the Unrestricted Case

Over unrestricted models, separability turns out to be only slightly more complicated than
definability. Lemma 6 becomes false if ¬φ is replaced with arbitrary φ′ (which would be the
statement relevant for separability). We have the following lemma, however.

▶ Lemma 8. For every φ,φ′ ∈ µML and n ∈ N the following are equivalent:
1. φ,φ′ are joint -n

σ-consistent over all models.
2. φ,φ′ are joint ∼=n

σ-consistent over Td, where d = |φ|+ |φ′|.

Proof. The implication (1)⇐(2) is immediate. To prove the other one (1)⇒(2) consider an
intermediate property:

φ,φ′ are joint ∼=n
σ-consistent over all models. (1.5)

The implication (1)⇒(1.5) can be read off from Otto’s original proof. The remaining one
(1.5)⇒(2) is a special case of a stronger claim which we prove later: the implication (3)⇒(4)
of Lemma 27. ◀

Lemma 8 allows us to solve ML-separability in exponential time.

▶ Theorem 9. Over all models, ML-separability of µML-formulae is ExpTime-complete.

Proof. The proof is almost the same as our proof of Theorem 5. The only difference is that
we consider an arbitrary φ′ in place of ¬φ, and hence use Lemma 8 in place of Lemma 6. ◀

Apart from deciding separability we also construct separators when they exists. Given a
subset L of µML formulae, φ ∈ µML, and ψ ∈ L, we call ψ an L-uniform consequence of φ if
ψ |= θ for every θ ∈ L such that φ |= θ. The notion relativizes to a fixed class C of models
by only considering entailment over that class. Observe that if φ,φ′ are L-separable and ψ

is an L-uniform consequence of φ then ψ is an L-separator for φ,φ′. The same is true over
any class C.

Note that it follows from the proof of Theorem 9 that if φ,φ′ are ML-separable then
they admit a separator of modal depth n at most exponential in |φ| + |φ′|. It follows
that constructing an MLσ-separator for φ,φ′ boils down to constructing an MLn

σ-uniform
consequence of φ. A naive construction which always works is to take the disjunction of all
MLn

σ-types consistent with φ over C. Here, by an MLn
σ-type we mean a maximal consistent

subset of MLn
σ. Since up to equivalence there are only finitely many formulae in MLn

σ, each
MLn

σ-type can be represented as a single MLn
σ-formula and the mentioned disjunction ψ is

well-defined. This construction is non-elementary in n over all models and doubly exponential
in n over models of bounded outdegree.

We present an efficient construction of MLn
σ-uniform consequences. The construction

works over unrestricted models, over T1 and over T2 but not over Td for d ≥ 3. Since in the
following Section 4 we will provide a more efficient construction for T1, now we only look at
the unrestricted and binary case. For convenience, we construct MLn

σ-uniform consequences
of automata instead of formulae, with definition adapted in an obvious way.

▶ Proposition 10. Let C be the class of all models or T2. Assume an NPTA A over C, a
signature σ and n ∈ N. An MLn

σ-uniform consequence of A over C can be constructed in
time |A|O(n·|A|) if C is the class of all models and in time 2O(n·|A|) if C = T2.
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Proof. Let A be an NPTA. Let B = (Q,Σ, qI , δ, rank) be an automaton of the same size
recognizing σ-reducts of models of A. A formula ψ is an MLn

σ-uniform consequence of A over
C iff it is an MLn-uniform consequence of B over C. Thus, it suffices to construct the latter.

We construct ψn,q for every q ∈ Q and n ∈ N by induction on n ∈ N. For the base case
we put:

ψ0,q =
∨
{c ∈ Σ | there is N ∈ C with N |= B[qI ← [ q] and N |= c}

For the induction step define:

ψn+1,q =
∨
c∈Σ

∨
S∈δ(q,c)

c ∧∇{ψn,p | p ∈ S}

where ∇Φ is an abbreviation for
∧

θ∈Φ 3θ ∧ 2
∨

θ∈Φ θ. Assume C is either the class of all
models or T2. The construction preserves the following invariant:

M |= ψn,q ⇐⇒ there exists N ∈ C with N |= B[qI ← [ q] and M -n N (1)

for every structure M∈ C. Hence, ψn,qI
is an MLn

σ-uniform consequence of A over C. It is
routine to check that in either case the formula has the right size.

The proof of (1) proceeds by induction, with slightly different arguments in the cases of
binary and of unrestricted models. The details of this proof are found in Appendix A.1. It is
worth to point out, however, that the implication ⇒ from left to right would not be valid
over Td with d ≥ 3. ◀

Given the exponential construction of automata from Theorem 2 and the exponential
upper bound on modal depth n of separators, Proposition 10 yields an efficient construction
of separators.

▶ Theorem 11. If φ,φ′ are MLσ-separable, then one can compute an MLσ-separator in time
doubly exponential in |φ|+ |φ′|.

It is not difficult to show that, in the presence of at least two accessibility relations 31,32,
the construction is optimal: one can express in µML that the model embeds a full binary
tree of depth 2n and in which each inner node has both a 31- and a 32-successor. Using
standard techniques, one can show that any modal formula expressing this property is of
doubly exponential size [13]. Whether having two accessibility relations is necessary for this
lower bound is an interesting question which we leave open.

It is interesting to note that the separators we compute are not the logically strongest
separators and, in fact, strongest separators do not even have to exist.

▶ Example 12. Consider φ = θ∞ from before and φ = 2⊥ For every n ∈ N, the modal
formula 3n⊤ separates φ from φ′, and 3m⊤ |= 3n⊤ whenever m ≥ n.

The remaining open cases are the problems of ML-separability (and separator construction)
over Td for d ≥ 1. We investigate the cases of unary (d = 1), binary (d = 2), and higher
maximal outdegree (d ≥ 3) in turn. We emphasize that the outdegree d is not a part of the
input but rather a property of the considered class of models.

4 Unary Case

We first investigate ML-separability over T1, that is, models that are essentially words. Note
that satisfiability of µML over words is PSpace-complete (an upper bound follows, e.g., via
the translation to automata and the lower bound is inherited from LTL [30, Theorem 4.1])
which suggests that also definability and separability could be easier. Indeed, we show:
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▶ Theorem 13. ML-definability and ML-separability of µML-formulae is PSpace-complete
over T1.

Proof. The lower bound is by a reduction from satisfiability, and applies to definability.
Given formulae φ,φ′ ∈ µML and a subset of the signature σ, consider the set of finite

words L = {W ∈ P(σ)∗ | W is a σ-reduct of a prefix V of some model U of φ}. Let L′ be
a similar language defined for φ′. Two unary models are bisimilar iff they are identical.
Hence, by Equivalence (Base) the formulae φ,φ′ ∈ µML are not MLσ-separable over T1 iff
L ∩ L′ is infinite. It is standard to define a finite automaton A recognizing L ∩ L′ and check
if its language is infinite (which is equivalent to checking if L∩L′ contains input longer than
|A|). To do it in polynomial space, we nondeterministically guess the long input, letter by
letter, and only remember the current state and a binary counter measuring the length of
the input guessed so far. ◀

We conclude this section with proving that MLσ-separators can be constructed in ex-
ponential time and are thus of at most exponential size. Note that this is optimal, since
over T1, µML is exponentially more succinct than ML. Indeed, it is standard to implement
an exponential counter using a polynomially sized µML-formula.

▶ Theorem 14. If φ,φ′ ∈ µML are MLσ-separable over T1, then one can compute an
MLσ-separator in time exponential in |φ|+ |φ′|.

As argued in the previous section, it suffices to construct an MLn-uniform consequence of
the NPTA equivalent to φ, which we do next.

▶ Proposition 15. Let A be an NPTA over T1 with ℓ states, n ∈ N, and σ a signature. An
MLn

σ-uniform consequence of A over T1 can be constructed in time polynomial in n, σ, and ℓ.

Proof. As argued in the previous section, it suffices to construct an MLn-uniform consequence
of the NPTA B which recognizes precisely the σ-reducts of models of A. Let B have states Q.
By construction of B, we have |Q| = ℓ. As an auxiliary step, we define for every p, q ∈ Q and
m ≤ n a formula ψm

p,q ∈ MLn
σ such that for every M∈ T1:

M |= ψm
p,q ⇐⇒ there is a run of B from p to q over the m-prefix of M. (2)

The ψm
pq are defined inductively with the base cases (m ≤ 1) read off from B, and using

divide and conquer in the inductive step (m > 1), to keep the formulae small. More formally,
we define ψm

pq for m > 1 and all p, q ∈ Q by taking:

ψm
pq =

∨
q′∈Q

(
ψ

⌊m/2⌋
pq′ ∧3⌊m/2⌋ψ

⌈m/2⌉
q′q

)
It is routine to verify that ψm

pq satisfies (2) and is of size |ψm
pq| ∈ O(|Q| ·m2). Based on the

ψm
pq, one can define a formula ψn that describes all possible prefixes of length ≤ n of models

of B, and thus is the sought MLσ-uniform consequence of B. One can think of ψn as the
disjunction of formulae ψn

q0q for q0 the initial state of B, but the full construction is slightly
more involved since models accepted by B might be also shorter than n. ◀

5 Binary Case

We next handle the binary case T2. The key observation here is that, between full binary
trees, bisimilarity entails isomorphism.



J.C. Jung and J. Kołodziejski 63:11

▶ Proposition 16. Assume full binary trees M,M′ ∈ T2. If M and M′ are σ-bisimilar
then they are σ-isomorphic.

Proof. By definition a σ-bisimulation between two models is a bisimulation between their
reducts to σ, and σ-isomorphism is such a bisimulation which is additionally bijective. It
therefore suffices to show that ifM,M′ are full binary trees and Z is a bisimulation between
them then there is a bijective bisimulation Z ′ ⊆ Z. We pick such Z ′ inductively starting
with the pair of roots (vI , v

′
I). The key observation is that if v has children v1, v2 and w has

children w1, w2 and vZw then either (i) v1Zw1 and v2Zw2 or (ii) v1Zw2 and v2Zw1 (the
cases are not exclusive). The details can be found in Appendix C.1. ◀

Proposition 16 can be used to prove the Craig interpolation property of ML over T2 and
implies the following separability-variant of Lemma 6 over T2.

▶ Lemma 17. For every φ,φ′ ∈ µML and n ∈ N the following are equivalent:
1. φ,φ′ are joint -n

σ-consistent over T2.
2. φ,φ′ are joint ∼=n

σ-consistent over T2.

Proof. We show only the nontrivial implication 1 ⇒ 2. Assume binary M |= φ, M′ |= φ′

with M -n
σ M′. Let N |= φ and N ′ |= φ′ be full binary trees obtained from M and M′ by

duplicating subtrees. By Proposition 16, N ∼=n
σ N ′ which proves 2. ◀

Similarly to the definability case, Lemma 17 combined with Equivalence (Base) and Proposi-
tion 7 immediately give an exponential procedure for separability. Since the lower bound is
inherited from definability, we get the following result.

▶ Theorem 18. ML-separability and ML-definability of µML-formulae is ExpTime-complete
over T2.

With the same argument as for Theorem 11 we use Proposition 10 to conclude:

▶ Theorem 19. If φ,φ′ are MLσ-separable over T2, then one can compute an MLσ-separator
in time doubly exponential in |φ|+ |φ′|.

6 Ternary and Beyond

In this section we address the case of models with outdegree bounded by a number d ≥ 3.
We illustrate that this case behaves differently as it lacks the Craig interpolation property.

▶ Example 20. Consider ML-formulae φ = 3(a∧b)∧3(a∧¬b) and φ′ = 3(¬a∧c)∧3(¬a∧¬c).
Clearly, φ |= ¬φ′ over T3. Observe that models M,M′ in Figure 1 witness that φ,φ′ are
joint -{a}-consistent and thus joint -n

{a}-consistent for every n ∈ N. By Equivalence (Base)
there is no ML{a}-separator, which is nothing else than a Craig interpolant. ◀

Motivated by the lack of the Craig interpolation property, we study the ML-interpolant
existence problem: given φ,φ′ ∈ ML and signature σ, decide whether there is an MLσ-
separator of φ,¬φ′, that is, ψ ∈ MLσ with φ |= ψ |= φ′. Craig ML-interpolant existence is
the special case in which σ = sig(φ) ∩ sig(φ′). Observe that ML-interpolant existence is the
special case of ML-separability of µML-formulae in which the input to the separability is
restricted to ML-formulae. We show that already ML-interpolant existence over T3 is harder
than ML-separability of µML-formulae over arbitrary models.

▶ Theorem 21. For d ≥ 3, ML-interpolant existence over Td is coNExpTime-complete.
Hardness already applies to Craig ML-interpolant existence over Td.
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M M′

vI

a, b a,¬b ¬a

v′
I

¬a, c ¬a,¬c a

Figure 1 Witness of joint consistency: dashed lines and colors indicate the {a}-bisimulation.

Proof. The upper bound is easy to establish based on the observation that φ,¬φ′ of modal
depth at most m do not admit an MLσ-separator over Td iff they are joint -m

σ -consistent
over Td. The witness M,M′ of joint -m

σ -consistency of φ,¬φ′ can assumed to be of depth
m. Such models are of exponential size (they have at most dm points) and can thus be
guessed by a non-deterministic exponential time bounded Turing machine.

The lower bound is more intriguing and relies on an extension of Example 20. Reconsider-
ing the example it is important to note that in every witnessM,M′ of joint -n

{a}-consistency
of φ,φ′, there are two successors of vI that are bisimilar to the same successor of v′

I . We
extend the idea and enforce exponentially many bisimilar points. More precisely, consider
families (ψi)i∈N, (ψ′

i)i∈N of modal formulae inductively defined as follows:

ψ0 = ψ′
0 = ⊤

ψi+1 = 3(a ∧ bi) ∧3(a ∧ ¬bi) ∧2
(
a→ (ψi ∧ (bi →

∧
j<i 2

jbi) ∧ (¬bi →
∧

j<i 2
j¬bi))

)
ψ′

i+1 = 3(¬a ∧ c) ∧3(¬a ∧ ¬c) ∧3(a ∧ ψ′
i)

Clearly, the size of ψi, ψ
′
i is polynomial in i. Moreover, by induction on i, it is readily verified

that for every i ∈ N, for every M,M′ ∈ T3 with M |= ψi, M |= ψ′
i, and every ({a}, i)-

bisimulation S witnessingM -i
{a} M

′, there are points w0, . . . , w2i−1 in depth i inM and a
point ŵ in depth i inM′ such that (wj , ŵ) ∈ S for all j and such that distinct wj , wk can be
distinguished by some proposition in b0, . . . , bi−1. Intuitively, this means that ψi, ψ

′
i enforce

in joint -i
{a}-consistent modelsM,M′ thatM contains 2i points w0, . . . , w2i−1 which are all

linked to the same point ŵ in M′. We exploit this link to synchronize information between
the wj , following a strategy that has recently been used to show coNExpTime-hardness for
interpolant existence in some description logics [1].

We reduce a NExpTime-complete tiling problem [14]: Given a set ∆ of tile types and
horizontal and vertical compatibility relations H,V ⊆ ∆ ×∆, and some n ∈ N in unary,
decide whether one can tile the 2n × 2n torus with tiles from ∆ complying with H,V . Given
∆, H, V, n, we define formulae φn = ψ2n ∧22nχn, φ′

n = ψ′
2n ∧22nχ′

n of modal depth m and
with common signature σ = sig(φn) ∩ sig(φ′

n) such that

∆, H, V, n has a solution ⇔ φn, φ
′
n are joint -m

σ -consistent.

To explain the idea, letM,M′ witness joint -m
σ -consistency of φn, φ

′
n. The gadget formulae

ψ2n, ψ
′
2n enforce 22n points w0, . . . , w22n−1 in depth 2n in M which are all linked via the

bisimulation to a single point ŵ in M′. These 22n points shall represent the 2n × 2n cells
of the torus. The intended solution of the tiling problem is represented via propositions
pd ∈ σ, for each d ∈ ∆. To synchronize them we proceed as follows. Using the 2n
propositions b0, . . . , b2n−1 (which are not in σ), we can associate coordinates (xi, yi) ∈
{0, . . . , 2n− 1}× {0, . . . , 2n− 1} to each point wi in the torus. To understand the purpose of
χn, χ

′
n, suppose for a moment that the outdegree of the points ŵ and the wi is at most 22n
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(instead of 3). Then we could proceed by enforcing (via χn) below each wi with coordinates
(xi, yi) three successors v1

i , v
2
i , v

3
i such that

v1
i , v2

i , v3
i have coordinates (xi, yi), (xi, yi + 1), and (xi + 1, yi), respectively;

the coordinates of the vj
i are made visible using propositions in σ;

v1
i , v

2
i , v

3
i satisfy pd1 , pd2 , pd3 for d1, d2, d3 ∈ ∆ such that (d1, d2) ∈ V and (d1, d3) ∈ H.

These three successors stipulate bisimilar successors of ŵ. Since each point in the torus is
stipulated three times as successor of some wi and since the outdegree of ŵ is restricted to
22n, the three copies of the same point satisfy the same proposition pd. By the last item
above, the selected propositions comply with V,H and thus represent a solution to the tiling
problem. Now, since the outdegree below ŵ is at most 3 (and not 22n as assumed), the
χn, χ

′
n have to be a bit more complicated, but the idea remains the same. ◀

We show next that the situation for the full separability problem is even worse.

▶ Theorem 22. For every d ≥ 3, ML-separability of µML-formulae over Td is 2-ExpTime-
complete.

Thus, over Td for d ≥ 3, ML-separability is provably harder than ML-definability, c.f.
Theorem 5. Both the upper and the lower bound of Theorem 22 are non-trivial; we provide
proof sketches in the following two subsections. Before doing that let us conclude this part
with separator construction.

▶ Theorem 23. If φ,φ′ are MLσ-separable over Td, d ≥ 3, then one can compute an
MLσ-separator in time triply exponential in |φ|+ |φ′|.

Proof. (Sketch) It follows from the upper bound proof of Theorem 22 that, if φ,φ′ admit
an MLσ-separator, then they admit one of modal depth bounded doubly exponentially in
|φ|+ |φ′|. Observe that over the signature of φ and φ′ there are only triple exponentially
many trees of fixed outdegree d and double exponential depth, and that each such tree is
characterized by a modal formula of triply exponential size. The sought separator is then
the disjunction of all such formulae consistent with φ. ◀

6.1 Lower Bound for Theorem 22
We reduce the word problem of exponentially space bounded alternating Turing machines
(ATMs), which is known to be 2-ExpTime-complete [8]. Informally, the states of such
ATMs are partitioned into universal states Q∀ and existential states Q∃. Configurations of
ATMs are defined as usual, but computations are not sequences of configurations but trees of
configurations such that an existential configuration has exactly one successor labeled with a
universal configuration and a universal configuration has exactly two successors labeled with
existential configurations. A computation tree for an input w is a tree whose root is labeled
with the initial configuration and such that successor nodes contain successor configurations.
w is accepted if there is a computation tree in which each path is infinite (this acceptance
condition is slightly non-standard, but eases the proof).

The reduction relies on the same gadget formulae (ψi)i∈N, (ψ′
i)i∈N as used in the proof

of Theorem 21 and additionally uses ideas for showing 2-ExpTime-hardness for recently
studied interpolant existence problems for description logics [1]. For a given ATM A and
input w of length n, we construct formulae φn = ψn ∧2nχ, φ′

n = ψ′
n ∧ χ′ such that

φn, φ
′
n are joint -m

σ -consistent for every m ∈ N iff A accepts w.
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universal conf.

existential conf. universal conf.wi . . .
2n − i

. . .

. . .

2n − i
. . . . . .

2n − i
. . .

. . .

. . .

. . .
2n − i

. . . . . .
2n − i

. . .

. . .

. . .

Figure 2 Computation tree of A below some wi (drawn horizontally for space constraints).

This suffices by Equivalence (Base). The signature σ will consist of a, z, and propositions cα

for every possible cell content α of A, that is, α ∈ Γ ∪ (Q× Γ). Additionally, φn and φ′
n will

use auxiliary propositions, e.g., to encode counters. The only purpose of χ′ is to mention the
propositions in σ; the main work is done by ψn, ψ

′
n, χ.

To explain the idea, let us consider witnesses M,M′ for joint -m
σ -consistency of φn, φ

′
n

for sufficiently large m. By the properties of ψn, ψ
′
n, we find 2n points w0, . . . , w2n−1 in

depth n in M which are bisimilar to a single point ŵ in depth n in M′. Recall that in
every wi, we have access to its index i via a counter using propositions b0, . . . , bn. Now, χ is
a µML-formula with the following properties, see also Figure 2 for illustration.

χ enforces the “skeleton” of a computation tree for A, in which each configuration is
modeled by a path of length 2n (using an exponential counter), and in which universal
and existential configurations alternate.
χ also enforces that each point of the skeleton is labeled with some cell content via
σ-propositions cα, but without any synchronization except the initial configuration.
χ makes sure that below wi the positions 2n−i of successor configurations are coordinated.

The key point is that this enforces (due to bisimilarity) a computation tree below ŵ in which,
due to the last item above, all positions of configurations are coordinated.

We remark that the hardness also holds when σ is not part of the input: one can reduce
separability of φ,φ′ by MLσ-formulae to separability of φ,φ′ by (arbitrary) ML-formulae.

6.2 Upper Bound for Theorem 22
We show that over models of outdegree at most d, ML-separability of fixpoint formulae can
be solved in doubly exponential time. Let us start with establishing a technical but useful
fact. For every language of d-ary trees L ⊆ Td denote the language:

bisQuot(L) = {M ∈ Td | there is N ∈ L and a functional bisimulation Z : N bis→M}

of bisimulation quotients of trees from L.

▶ Proposition 24. For every NPTA A, an NPTA B recognizing bisQuot(L(A)) can be
computed in time exponential in the size of A.

Proof. Fix an NPTA A = (Q,Σ, qI , δ, rank). For every M ∈ Td, we characterize existence
of d-ary N |= A with N bis→M with the following parity game GbisQuot(M,A). The game
has the set M ×Q as positions. The pair (vI , qI) consisting of the root vI of M and qI is
the initial position. From a position (v, q) first ∃ve chooses S ∈ δ(q, val(c)) and a surjective
map h : S → {v1, ..., vk} where {v1, ..., vk} is the set of children of v. Then ∀dam responds
with a choice of p ∈ S and the next round starts in position (h(p), p). The game is a parity
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game: the ranks are inherited from A in the sense that the rank of (v, q) equals rank(q). In
Appendix D.2 we prove:

∃ve wins GbisQuot(M,A) ⇐⇒ M ∈ bisQuot(L(A)) (3)

for every M∈ Td. Using (3) we prove Proposition 24. It suffices to construct an automaton
B which accepts M iff ∃ve wins GbisQuot(M,A). To that end, using standard techniques
we encode ∃ve’s positional strategies for GbisQuot(M,A) as colorings of M with P(Q × Q)
and construct, in time exponential in |Q|, an automaton B+ recognizing models labelled
with such winning positional strategies. We then obtain B recognizing bisQuot(L(A)) by
projecting out the additional colors P(Q×Q) from B+. ◀

With the help of Proposition 24 we prove Theorem 22. Fix d, µML-formulae φ and φ′ and
signature σ. By Equivalence (Base), it suffices to check if φ and φ′ are jointly -n

σ-consistent
over Td for every n. However, unlike with definability or in the binary case, we cannot
conclude joint ∼=n

σ-consistency from joint -n
σ-consistency. Instead, we use Proposition 24 to

directly decide joint -n
σ-consistency for all n. For a language L ⊆ Td, define the language:

QPL(L) = {N ∈ Td | there is M∈ L, finite prefix M0 of M and Z :M0
bis→ N}

of finite d-ary trees which are bisimulation quotients of finite prefixes of models from L. By
Proposition 24 and the closure properties of parity automata, for every A one can construct
in exponential time an automaton B recognizing QPL(L(A)).

We prove the upper bound from Theorem 22. Using Theorem 2 compute automata
A,A′ accepting σ-reducts of models of φ,φ′. Compute B,B′ recognizing QPL(L(A)) and
QPL(L(A′)). Recall that any two trees are bisimilar iff they have isomorphic bisimulation
quotients. It follows that φ,φ′ admit a MLn

σ-separator over Td iff A,A′ are joint -n-consistent
iff B,B′ are joint ∼=n consistent. By Proposition 7, the latter condition holds for all n ∈ N iff
it holds for n = |B|+ |B′|+ 1 and this can be tested in time polynomial in |B|+ |B′|. Since
A,A′ are exponential, and B,B′ are doubly exponential in the size of φ,φ′, this gives the
upper bound from Theorem 22.

7 Case Study: Graded Modalities

In this section we apply our techniques and results to the case with graded modal operators.
Formally, we extend µML with formulae of the shape 3∼gψ and 2∼gψ, where ∼ ∈ {≤,≥}
and the grade g ∈ N is a natural number. Intuitively, 3≥gψ is true in a point w if w
has at least g successors satisfying ψ and dually, 2≤gψ is true in w if all but at most g
successors satisfy ψ [11, 25]. We denote with grML and grµML the extension of ML and µML,
respectively, with such graded modalities. Clearly, for any d ∈ N, Td is grµML-definable by
the formula θd = νx.(3≤d⊤ ∧ 2x), which is an additional motivation to study grML and
grµML.

Indeed, using the results and techniques from the previous section one can easily prove
that ML-separability of grµML-formulae (defined as expected) is 2-ExpTime-complete.

▶ Theorem 25. ML-separability of grµML-formulae is 2-ExpTime-complete.

Proof. For the lower bound, we reduce ML-separability of µML-formulae over T3 in spirit
similar to Lemma 4. Since the former problem is 2-ExpTime-hard by Theorem 22, the
latter is as well. Recall the formula θ3 defining T3. Then, for any µML-formulae φ,φ′ and
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ψ ∈ ML, we have that ψ is an MLσ-separator of φ,φ′ over T3 iff ψ is an MLσ-separator of
φ ∧ θd, φ

′ ∧ θd.
Towards the upper bound, suppose φ,φ′ ∈ grµML. Using standard arguments, one can

show that φ,φ′ are ML-separable over all models iff they are ML-separable over Td, where
d = g × (|φ|+ |φ′|) and g is the greatest grade occurring in φ,φ′. We then construct NPTA
A,A′ equivalent to φ,φ′ over d-ary trees via (an analogue for grµML of) Theorem 2 and
proceed with A,A′ as described in the upper bound proof of Theorem 22. ◀

Interestingly, the problem becomes easier if we allow grades in the separating formula.

▶ Theorem 26. grML-separability of grµML-formulae is ExpTime-complete.

The lower bound follows by the usual reduction from satisfiability. We thus focus on
the upper bound. Similarly to the non-graded case, we establish first a model-theoretic
characterization, based on the appropriate notion of bisimilarity that characterizes the
expressive power of grML [10]. A relation Z between models is a graded bisimulation if it
satisfies (atom) and graded variants of the (back) and (forth) conditions of bisimulations.
The graded (forth) condition says that if vZw then for every k ∈ N and pairwise different
children v1, ..., vk of v, there are pairwise different children w1, ..., wk of w satisfying viZwi

for all i ≤ k. The graded (back) condition is symmetric. It is a g-graded bisimulation if
the graded (forth) and (back) conditions need to be satisfied only for k ≤ g. We denote
with M -grd M′ (resp., M -g M′) the fact that there is a graded bisimulation (resp., a
g-graded bisimulation) between M and M′ that relates their roots. Variants with bounded
depth n and/or given signature σ are defined and denoted as expected.

▶ Lemma 27. For every φ,φ′ ∈ grµML with maximal grade gmax, signature σ, and n ∈ N,
the following are equivalent:
1. φ,φ′ are not grMLn

σ-separable (over all models).
2. φ,φ′ are joint -n

grd,σ-consistent (over all models).
3. φ,φ′ are joint ∼=n

σ-consistent (over all models).
4. φ,φ′ are joint ∼=n

σ-consistent over Td for d = gmax × (|φ|+ |φ′|).
Using Lemma 27, one can solve grML-separability of grµML formulae in exponential time,

following the approach described in Section 3. More precisely, given φ,φ′, we construct
NPTA A,A′ equivalent to φ,φ′ over d-ary trees, d as in Lemma 27, and decide whether
A,A′ are joint ∼=n

σ-consistent over Td for all n via Proposition 7.
Let us provide some details on the proof of the central Lemma 27.

Proof. We show the implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1 in turn. The implication 4 ⇒ 1 is
immediate.

For 1⇒ 2, suppose φ,φ′ are not grMLn
σ-separable. Hence, for every g ∈ N there is a pair

of models Mg |= φ and M′
g |= φ′ with Mg -n

g,σ M′
g. One can encode with an FO-sentence

θ that two models M and M′ are depth-n trees, M is a prefix of some M+ |= φ and M′

of some M′
+ |= φ′. If Z is a fresh binary symbol, then it is also possible to encode with an

(infinite) set T of FO-sentences that Z is a graded bisimulation between M and M′. Every
finite fragment of {θ} ∪ T only mentions finitely many grades and hence by assumption
is satisfiable. Thus, by compactness of FO, the entire {θ} ∪ T is satisfiable. This gives us
M -n

grd,σ M′ with extensions M+ |= φ and M′
+ |= φ′.

For 2⇒ 3, fix witnesses M,M′ of joint -n
grd,σ-consistency, that is, M -n

grd,σ M′ and
there are extensions M+,M′

+ of M,M′ with M+ |= φ and M′
+ |= φ′. By the Löwenheim-

Skolem property of FO we may assume that both models are at most countable. It remains
to apply the known fact that countable trees N and N ′ satisfy N -grd N ′ iff N and N ′ are



J.C. Jung and J. Kołodziejski 63:17

isomorphic. For the sake of completeness, we add a brief justification of this latter statement.
Assume w ∈ N and w′ ∈ N with respective children w1, w2, ... = w and w′

1, w
′
2, ... = w′ such

that w -grd w
′. For every -grd-equivalence class X of w the corresponding equivalence class

{w′
i | ∃j≤k. wj -grd w

′
i} = X ′ has the same cardinality as X. This is immediate for finite

X, and for infinite X it follows because in countable models every two infinite subsets have
the same cardinality. This allows us to inductively pick a bijective subrelation Z of -grd
between N and N ′ which is still a graded bisimulation.

For 3⇒ 4, fix witnesses M,M′ of joint ∼=n
σ-consistency, that is, M∼=n

σ M′ and there are
extensionsM+,M′

+ ofM,M′ withM+ |= φ andM′
+ |= φ′. We trimM+ andM′

+ so that
the outdegree becomes at most d. Without loosing generality we assume that the prefixes of
M+ and M′

+ are not only isomorphic but identical. The semantics of every ψ ∈ µML in
a model N is captured by a parity game whose positions are N × SubFor(ψ). We extend
the definition of the game to µMLgrd. The set of positions N × SubFor(ψ) and the winning
condition are defined as in the classical case, and so are the moves for all the positions with
topmost connective other than the graded modalities. In the classical game, from (v,3θ)
∃ve chooses a child v′ of v and the next position is (v′, θ). In (v,3≥kθ), first ∃ve chooses a
subset v1, ..., vk of size k of children of v, then ∀dam chooses one of these children vi and
the next round starts at (vi, θ). Dually, in (v,2≤kθ) first ∃ve picks a subset v1, ..., vk of at
most k v’s children, then ∀dam responds with a choice of some v′ not in v1, ..., vk and the
next position is (v′, θ). It is tedious but straightforward to check that ∃ve wins the game
from v, ψ iff ψ is true at v, as in the classical case. Note that if we take a submodel N0 of
N which contains at least the root and all 3-witnesses (that is, points chosen by a winning
strategy ζ in for positions of shape (v,3≥kθ)) then (the restriction of) ζ to N0 is a winning
strategy for G(N0, ψ).

Let ζ and ζ ′ be positional winning strategies for ∃ve in the semantic games G(M+, φ) and
G(M′

+, φ
′). We take submodel M0 |= φ of M+ as follows. In the n-prefix we take the root

and all 3-witnesses for both ζ and ζ ′. In the rest of the model we only take 3-witnesses for
ζ. A submodel M′

0 of M′
+ is defined symmetrically. It follows that M0 |= φ and M′

0 |= φ′.
Recall that g is the maximal grade appearing in φ and φ′. Since the respective sets

of positions of G(M+, φ) and G(M′
+, φ

′) are M+ × SubFor(φ) and M ′
+ × SubFor(φ′), for

every point v there are at most g × |φ| 3-witnesses chosen by ζ from a position which has
v on the first coordinate. Consequently, the outdegree of M0 and M′

0 is not greater than
d = g × (|φ|+ |φ′|). This proves Lemma 27. ◀

8 Conclusion

We have presented an in-depth study of modal separation of µML-formulae over different
classes of structures. For us, the most interesting results are the differences that are obtained
over classes of bounded outdegree for different bounds d = 1, d = 2, d ≥ 3. Without much
effort our results on trees of bounded outdegrees can be transferred to infinite words and to
ranked trees, via reductions similar to Lemma 4.

Throughout the paper we used the simplest possible measure of formula size: the length
of a formula written as a string. Alternative more succinct measures, such as the number of
non-isomorphic subformulae (DAG-size), are also interesting. Thus, a natural question is
to what extent our results depend on the choice of size measure. In principle, using a more
succinct measure makes the problems of definability and separability harder. However, all our
decision procedures, with an exception of Theorem 21, are automata-based. Consequently,
these procedures carry over with unchanged complexity to any size measure for which the
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translation from logic to nondeterministic automata has the same complexity as in Theorem 2.
In the remaining case of Theorem 21 a sufficient assumption is that the modal depth of a
formula is at most polynomial in its size. Both the mentioned assumptions are arguably
modest.

A place where the choice of size measure matters a little more is the construction of modal
definitions and separators. In the cases of unrestricted, unary (T1), and high outdegree
models (Td for d ≥ 3) the constructed formulae have DAG-size essentially the same as size:
doubly, singly, and triply exponential, respectively. Interestingly, however, in the binary case
T2 our formulae have only singly exponential DAG-size, which is easily seen to be optimal
and contrasts with their doubly exponential size. This demonstrates that the lower bounds
for size of modal definitions over T2 cannot work for DAG-size. The same lower bound
construction fails for DAG-size over unrestricted models, although there the exact DAG-size
complexity of optimal separators remains unknown.

We mention some interesting open problems. First, the relative succinctness of µML over
ML is to the best of our knowledge open in the setting with only one accessibility relation.
Second, as we have mentioned in Section 3, the separators we compute are not necessarily
the logically strongest ones. The logically strongest separators of φ,φ′ are precisely the
ML-uniform consequences of φ (if they exist) and are a natural object of study. Clearly,
modal definability of φ is a sufficient condition, but not a necessary one. Let φ = ψ ∧ ¬θ∞
and φ′ = ψ for some ψ ∈ ML. Then φ is not equivalent to a modal formula, but ψ is
a strongest separator. In the context of grµML, open questions are ML-definability (and
separability) and µML-definability (and separability) of grµML-formulae. We conjecture
them to be easier than 2-ExpTime. Finally, let us mention that definability of µML-formulae
by safety formulae has been studied in [22]. It would be natural to investigate separability
there as well.
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A Proofs for Section 3

A.1 Correctness of the Construction of n-uniform Consequences

We prove (1). The base case is immediate so we focus on the inductive case with:

ψn+1,q =
∨
c∈Σ

∨
S∈δ(q,c)

c ∧∇{ψn,p | p ∈ S}.

Fix M, denote the color of the root by c and the set of all children of the root by M0. If M
satisfies ψn+1,q then there is {p1, ..., pl} = S ∈ δ(q, c) such that nabla ∇ of Φ = {ψn,p | p ∈ S}
is satisfied in the root.

We show that without loss of generality the root vI ofM has sufficiently many children to
find a separate witness for each ψn,p ∈ Φ. That is, we want to show that there is a surjective
assignment h : M0 → Φ that maps every v ∈M0 to some formula ψn,p true in v. With no
restrictions on outdegree this follows from bisimulation-invariance because we can duplicate
children of vI and their subtrees. In the binary case we cannot freely duplicate children so a
different argument is required. We want a different child vp |= ψn,p in M0 for each ψn,p ∈ Φ.
The only scenario in which we do not have such unique witnesses is when S has two elements
p1 and p2 (recall that B is an automaton over binary trees and so it has no transitions to
more than two states) and M0 has only one element v. Let M′ be a model obtained from
M by duplicating v and its subtree. Clearly, M -M′ and so M′ satisfies the nabla of Φ.
Moreover, it has the desired separate witnesses for φn,p1 and φn,p2 .

By induction hypothesis, for each v ∈M0 with h(v) = ψn,p there is a model Np |= B[qI ← [
p] n-bisimilar to the subtree of M rooted in v. Define N as follows: first take the disjoint
union {v} ⊔⊔{Np | p ∈ S} of all the Np’s and a fresh point v of color c; then for every
Np add an edge from v to the root of Np and set v as the new root. It is easy to see that
N |= B[qI ← [ q] and M -n+1 N , as desired.

Conversely, assumeM -n+1 N and N |= B[qI ← [ q] witnessed by an (n+ 1)-bisimulation
Z and a run ρ : N → Q. Denote the children of the root of N by N0. Since ρ is a run,
the set S = ρ[N0] of states assigned to N0 belongs to δ(q, c). Every v ∈ M0 is n-bisimilar
to some w ∈ N0 and hence by the induction hypothesis satisfies ψn,p for p = ρ(w) ∈ S.
Symmetrically, for every p ∈ S there is w ∈ N0 accepted by B[qI ← [ p]. Since that w is
n-bisimilar to some v ∈M0, by induction hypothesis v satisfies ψn,p. It follows that the root
of M satisfies ∇{ψn,p | p ∈ S} and therefore also ψn+1,q.

B Proofs for Section 4

We provide the full construction of the MLn
σ-uniform consequence of an NPTA A over T1.

▶ Proposition 15. Let A be an NPTA over T1 with ℓ states, n ∈ N, and σ a signature. An
MLn

σ-uniform consequence of A over T1 can be constructed in time polynomial in n, σ, and ℓ.

Proof. Let A be an NPTA and n ∈ N and σ a signature. Let B = (Q,Σ, δ, qI , rank) with
Σ = P(σ) be an NPTA of the same size that recognizes σ-reducts of models of A. A formula
ψ is an MLn

σ-uniform consequence of A iff it is an MLn-uniform consequence of B. We first
construct formulae ψm

pq ∈ MLn
σ, for m ≤ n and p, q ∈ Q such that for every M∈ T1:

(∗) M |= ψm
pq iff there is a run of B from p to q on the m-prefix of M.
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The definition is by induction on m:

ψ0
pq = if p ̸= q then ⊥ else ⊤

ψ1
pq =

∨
{c | c ∈ Σ, {q} ∈ δ(p, c)}

ψm
pq =

∨
q′∈Q

(
ψ

⌊m/2⌋
pq′ ∧3⌊m/2⌋ψ

⌈m/2⌉
q′q

)
for 1 < m ≤ n

It is routine to verify that ψm
pq satisfies (∗) and is of size |ψm

pq| ∈ O(|Q| ·m2).
Before we can construct the desired MLn

σ-uniform consequence, we need to introduce some
more notation. Since we are working over T1, δ(q, c) contains only sets of cardinality at most
1. The case ∅ ∈ δ(q, c) is of particular interest because this means that the automaton in
state q reading color c can “accept” even if it has not finished reading the input; in particular,
the automaton can accept finite words as well. Denote with Accq the set of c ∈ Σ with
∅ ∈ δ(q, c). Further denote with Contq the set of all c such that B[qI ← [ q] accepts a word
starting with c. We finish the construction by setting:

ψn =
∨

q∈Q

ψn
qI q ∧2n

∨
c∈Contq

c

 ∨ ∨
m≤n

∨
q∈Q

ψm
qI q ∧2m+1⊥ ∧2m

∨
c∈Accq

c

 .

It is readily checked that ψn satisfies the required size bounds. To verify that ψn |= θ for
every θ ∈ MLn with B |= θ, we show the following equivalence for all M∈ T1:

M |= ψn ⇐⇒ there exists N |= B with N -n M. (4)

For ⇒, fix M∈ T1 with M |= ψn. If M |= ψn
qI q ∧2n

∨
c∈Contq

c for some q, then by (∗),
there is a run of B from the initial state q0 to some state q ∈ Q when reading the n-prefix of
M, and the last color in the prefix is c. Since c ∈ Contq, we can extend the n-prefix ofM to
a N ∈ T1 accepted by B. If M |= ψm

qI q ∧ 2m+1⊥ ∧
∨

c∈Accq
c, for some m ≤ n and q ∈ Q,

then M is a finite tree of depth m that is accepted by the automaton. We can take N =M
in this case.

For ⇐, let M ∈ T1 a tree such that there is some N |= φ with N -n M. The
former condition implies that N |= B and thus there is an accepting run ρ of B on N ,
and the latter implies that N and M coincide on their n-prefixes. We distinguish cases.
If the depth of N is greater than n, then the n-prefix of ρ ending in state q witnesses
M |= ψn

qI q ∧2n
∨

c∈Contq
c. Otherwise, the depth of N is m ≤ n and the run ρ ending in q

witnesses that M |= ψm
qI q ∧2m+1⊥ ∧

∨
c∈Accq

c. ◀

C Proofs for Section 5

C.1 Proof of Proposition 16
Assuming full binary M,M′ and a bisimulation Z between them we pick a bijective bisimu-
lation Z ′ ⊆ Z. To that end, we inductively construct a descending sequence:

Z ⊇ Z1 ⊇ Z2 ⊇ Z3 ⊇ ...

of bisimulations such that for each n the restriction of Zn to the n-prefixes of M and M′

is bijective. The induction base n = 1 is trivial with Z1 = Z. For the induction step n+ 1
let Zn ⊆ Z be the bisimulation given by the inductive hypothesis. Zn bijectively maps the
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points v1, ..., vk at depth n in M to the respective points w1, ..., wk at depth n in M′. For
each i we have viZwi. Hence, either both vi and wi are leaves (i), or both have respective
children vl

i, v
r
i and wl

i, w
r
i . In the latter case either (ii) vl

iZw
l
i and vr

iZw
r
i or (iii) vl

iZw
r
i and

vr
iZw

l
i (the cases (ii) and (iii) are not exclusive). Consider the bijective relation Ki ⊆ Z

between children of vi and children of wi:

Ki =


∅ if vi and wi are leaves (i),
{(vl

i, w
l
i), (vr

i , w
r
i )} if (ii),

{(vl
i, w

r
i ), (vr

i , w
l
i)} otherwise.

The bisimulation Zn+1 is constructed as follows. It is identical to Zn between points at levels
at most n, to

⋃
i≤k K

i between points at level exactly n + 1, and to Z between points at
strictly greater levels. No points at mismatching levels are linked. It is straightforward to
verify that such Zn+1 ⊆ Zn is a bisimulation, and that its restriction to the n+ 1-prefixes of
M and M′ is bijective.

We conclude the proof by taking the limit Z ′ =
⋂

n∈N Zn as the desired bijective
bisimulation between M and M′.

C.2 Craig Interpolation over T2 from Proposition 16
TODO in the future.

D Proofs for Section 6

The lower bound proofs for Section 6 rely on the families of formulae (ψi)i∈N, (ψ′
i)i∈N that

were already defined in the main part of the paper.

▶ Lemma 28. There are families of formulae (ψi)i∈N, (ψ′
i)i∈N such that:

1. The size of the formulae ψi, ψ
′
i is polynomial in i.

2. sig(ψi) = {a, b0, . . . , bi−1} and sig(ψ′
i) = {a, c}.

3. For every i ∈ N and arbitrary formulae χ, χ′ ∈ µML the following holds. For every
M,M′ ∈ T3 with M |= ψi ∧ χ, M |= ψ′

i ∧ χ′, for every signature τ that contains a
but not c, b0, . . . , bi−1, and every (τ, ℓ)-bisimulation S witnessing M -ℓ

τ M′ for some
ℓ ≥ i, there are points w0, . . . , w2i−1 in depth i in M and a point ŵ in depth i in M′

such that (wj , ŵ) ∈ S for all j and such that distinct wj , wk can be distinguished by some
proposition in b0, . . . , bi−1.

Proof. We take the following formulae inductively defined as in the main part.

ψ0 = ψ′
0 = ⊤

ψi+1 = 3(a ∧ bi) ∧3(a ∧ ¬bi) ∧2
(
ψi ∧ (bi →

∧
j<i 2

jbi) ∧ (¬bi →
∧

j<i 2
j¬bi)

)
ψ′

i+1 = 3(¬a ∧ c) ∧3(¬a ∧ ¬c) ∧3(a ∧ ψ′
i)

Properties 1–3 can be verified by induction on i. ◀

D.1 Proof of Theorem 21
The proof of Theorem 21 is based on the following (straightforward) consequence of Equiva-
lence (Base).
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▶ Lemma 29. Let φ,φ′ ∈ MLn and σ be a signature. Then the following are equivalent for
all classes Td:
1. φ,φ′ do not admit an MLσ-separator over Td.
2. φ,φ′ are joint -n

σ-consistent over Td.

Proof. The implication from the first to the second item is immediate consequence of
Equivalence (Base). For the converse implication, suppose φ,φ′ are joint -m

σ -consistent and
let M |= φ,M′ |= φ′ with M -m

σ M′ witness this. Since φ,φ′ have modal depth at most
m, we can assume without loss of generality that M,M′ have depth at most m. But then,
M,M′ witness joint -n

σ-consistency of φ,φ′ for every n ≥ m. By Equivalence (Base) φ,φ′

do not admit an MLσ-separator. ◀

▶ Theorem 21. For d ≥ 3, ML-interpolant existence over Td is coNExpTime-complete.
Hardness already applies to Craig ML-interpolant existence over Td.

Proof. We start with the upper bound. By Lemma 29, interpolant non-existence can be
decided by a standard “guess-and-check”-procedure:
1. Guess two structuresM,M′ ∈ Td of depth at most the maximal modal depth m of φ,φ′,
2. Verify that M |= φ, M′ |= φ′, and M -m

σ M ′.
The runtime of the procedure is exponential: the size of any structure M ∈ Td of depth
m is bounded by dm. Moreover, model checking in modal logic and bisimulation testing is
possible in polynomial time in the size of the structure and the given formulae.

We next show the lower bound for d = 3, but the proof is analogous for d ≥ 4. We reduce
an appropriate tiling problem. Let ∆ be a finite set of tile types, and V,H ⊆ ∆ × ∆ be
vertical and horizontal compatibility relations. Then, a mapping τ : [n]× [n]→ ∆ is called a
torus tiling for ∆, V,H, n if for all i, j ∈ [n], we have:

(τ(i, j), τ(i⊕ 1, j) ∈ H and
(τ(i, j), τ(i, j ⊕ 1) ∈ V ,

where ⊕ denotes addition modulo n. The exponential torus tiling problem is to decide given
∆, V,H, n (in unary) whether there exists a torus tiling for ∆, V,H, 2n. It is well-known that
the exponential torus tiling problem is NExpTime-complete [14].

Let ∆, V,H, n be an input to the exponential torus tiling problem. We will provide
formulae φn, φ

′
n of modal depth 4n and with common signature σ = sig(φn) ∩ sig(φ′

n) such
that:

φn, φ
′
n are joint -4n

σ -consistent iff there is a torus tiling for ∆, V,H, 2n.

The common signature σ will consist of propositions a, b, and one proposition td, for every
d ∈ ∆. Both φn and φ′

n will use auxiliary propositions to encode counters. The formulae
φn, φ

′
n are based on the families of formulae (ψi)i∈N, (ψ′

i)i∈N defined in Lemma 28 and will
take the shape:

φn = ψ2n ∧22nχ1

φ′
n = ψ′

2n ∧22nχ2

for formulae χ1, χ2 to be defined below.
Consider models M |= ψ2n and M′ |= ψ′

2n with M -4n
σ M′. Let w0, . . . , w22n−1 be the

points in M and ŵ be the point in M′ that exist due to Lemma 28. Recall that, by the
lemma, all wi are linked to ŵ by a (σ, 2n)-bisimulation. We associate two numbers xi, yi

with each point wi as follows:
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xi is the number encoded by the valuation of b0, . . . , bn−1 in wi, and
yi is the number encoded by the valuation of bn, . . . , b2n−1 in wi.

Note that by the properties of w0, . . . , w22n−1, for every pair x, y with 0 ≤ x, y < 2n, there is
some wi with x = xi and y = yi. We denote that point with w(x, y). Hence, the numbers
xi, yi can serve as addresses of the 2n × 2n cells in the intended torus tiling. Intuitively,
we will exploit that all wi are linked to w by a (σ, 2n)-bisimulation to synchronize the tile
types in each cell. For what follows, it is convenient to denote with bi

0, . . . , b
i
2n−1 the values

of propositions bj in point wi, and with ci
0, . . . , c

i
2n−1 and di

0, . . . , d
i
2n−1 the value of the

propositions bj in the encoding of xi ⊕ 1, yi and xi, yi ⊕ 1, respectively. It is not difficult
to write formulae χ1, χ2 (of polynomial size) in modal logic (possibly using auxiliary non-σ
propositions) that express the following Conditions 1 and 2, respectively. Recall that σ
contains a, b and propositions td for every d ∈ ∆.
1. There are three paths p1, p2, p3 of length 2n with the following properties:

a. each path satisfies a in each point;
b. on p1, the j-th point satisfies b iff bi

j−1 = 1, for 1 ≤ j ≤ 2n;
c. on p2, the j-th point satisfies b iff ci

j−1 = 1, for 1 ≤ j ≤ 2n;
d. on p3, the j-th point satisfies b iff di

j−1 = 1, for 1 ≤ j ≤ 2n;
e. the ends of p1, p2, p3 are labeled with propositions td1 , td2 , td3 , respectively, such that

(d1, d2) ∈ H and (d1, d3) ∈ V .

2. There is a (ternary) tree of depth 2n with the following properties:

a. each node has three successors: one not satisfying a, one satisfying a and b, and one
satisfying a and not b;

b. in the leaves of this tree, we require that at most one proposition td is true.

This finishes the definition of the formulae φn, φ
′
n and we can proceed with showing the

correctness of the reduction.
Claim. ψ2n ∧22nχ1 und ψ′

2n ∧22nχ2 are joint -4n
σ -consistent iff there is a torus tiling for

∆, H, V, 2n.
To prove the claim, suppose first that ψ2n ∧ 22nχ1 und ψ′

2n ∧ 22nχ2 are joint -4n
σ -

consistent, witnessed by models M,M′. Let also be w0, . . . , w22n−1 and ŵ be the points
that exist in M,M′ due to Lemma 28.

We define a torus tiling τ as follows. Let x, y be any cell, that is, 0 ≤ x, y < 2n.
Conditions 1b–1d enforce that, three paths are stipulated: one (via 1b) in point w(x, y),
one (via 1c) in point w(x ⊖ 1, y), and one (via 1d) in point w(x, y ⊖ 1), where, similar to
⊕, ⊖ denotes subtraction modulo 2n. Each of these paths is labeled, using b ∈ σ with (the
encoding of) x, y along its elements. Due to Conditions 1a and 2a, these three paths (in M)
can only be bisimilar to the path (in M′) in the tree stipulated below ŵ that is labeled with
(the encoding of) x, y. In particular, the ends of the paths are bisimilar to the same leaf
in the tree. Since, by Condition 2b, every leaf in the tree satisfies at most one td, and, by
Condition 1e, the end of each path satisfies at least one td, all ends are labeled with the same
td. We set τ(x, y) = d. Synchronization is then achieved by Condition 1e. Indeed, consider
(x, y) and (x ⊕ 1, y). Then Condition 1e ensures that the end of the paths for (x, y) and
(x⊕ 1, y) stipulated in w(x, y) are labeled with td, td′ such that (d, d′) ∈ H. The argument
for vertical compatibility is symmetric.

In the other direction, it is not difficult to construct joint -4n
σ -consistent models from a

given torus tiling for ∆, H, V, 2n. ◀
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D.2 Upper Bound Proof of Theorem 22
We show adequacy (3) of the game GbisQuot(M,A) defined in the main part.

We first prove the implication “⇒” from left to right. Assume a winning strategy ζ for
GbisQuot(M,A). We construct N ∈ Td |= A and Z : N bis→M. The universe N consists of all
finite ζ-plays. There is an edge π → π′ from π to π′ if π′ extends π with one move of ∃ve
followed by a response of ∀dam. This means that the outdegree of π equals the size of the
transition S chosen by ζ as a response to π. In particular, N is d-ary. Define Z : N →M

such that Z(π) is the point component from the last configuration in π. We complete the
definition of N by putting valN (π) = valM(Z(π)) for all π ∈ N .

We claim that the function Z is a bisimulation. The atom case follows immediately from
the definition of valN . To prove the back and forth assume π ∈ N . Denote Z(π) = v, let
v1, ..., vk be the children of v and h : S → {v1, ..., vk} be the move chosen by ζ as a response
to π.

To show the forth condition assume π → π′. Existence of the edge π → π′ implies that
π′ is of shape π(h(p), p) for some p ∈ S. Let v′ = h(p). Since v → v′ and Z(π′) = v′ this
completes the argument of the forth condition. Towards the back condition assume v → v′

for some v′. Since v′ is a child of v and h is surjective, there is p ∈ S such that h(p) = v′.
Then π′ = π(v′, p) is a ζ-play such that Z(π′) = v′ and v → v′. Hence, v′ witnesses the back
condition.

It remains to construct an accepting run ρ : N → Q. For each π ∈ N we define ρ(π) as
the state component of the last configuration in π. This ρ is consistent with δ. To show this
assume π with children π1, ..., πk. Denote πi = π(vi, pi) for each i ≤ k and let (v, q) be the
last configuration in π. There is S ∈ δ(q, valM(v)) such that S = {p1, ..., pk}. Since ρ(π) = q,
ρ(πi) = pi for every i ≤ k and valN (π) = valM(v), the transition S is legal in π. To see that
ρ is accepting assume an infinite path π1, π2, ... in N and for each i let (vi, qi) be the last
configuration of πi (so in particular ρ(πi) = qi). We need to show that the sequence q1q2...

of states satisfies the parity condition. This is true because each πi is a ζ-play and therefore
so is their infinite limit (v1, q1)(v2, q2)... = π. This completes the proof of the implication
“⇒” in (3).

Let us prove the other implication “⇐” in (3). Assume N ∈ Td such that N |= A and
Z : N bis→ M, and let ρ : N → Q be an accepting run witnessing N |= A. We construct
a winning strategy ζ for ∃ve in GbisQuot(M,A). The constructed strategy preserves as
an invariant that for every ζ-play π = (v1, q1)...(vl, ql) there is a path w1...wl in N with
Z(wi) = vi and ρ(wi) = qi for each i ≤ l. The invariant holds in the initial position (vI , qI).
To define moves dictated by ζ assume a play π = (v1, q1)...(vl, ql) and a path w1...wl from
the invariant. Let v′

1, ...v
′
k be the children of vl. We define an ∃ve’s move h : S → {v′

1, ..., v
′
k}

dictated by ζ as a response to π.
Let S be the transition chosen by ρ in wl. By assumption no state of A appears more

than once in a single transition S of δ. This means that ρ is bijective between the set of
children of wl and S: for each p ∈ S there exists a unique child wp of wl such that ρ(wp) = p.
We set h(p) = Z(wp) for every p ∈ S. By the atom condition wl and vl have the same color
so to show that this h is a legal move for ∃ve it suffices to show that it is surjective. By the
back condition for every child v′ of vl there is some child w′ of wl with Z(w′) = v′. Hence,
h(ρ(w′)) = v′ which proves surjectivity of h. Moreover, the invariant is preserved: if π′

extends π by ∀dam’s response (h(p), p) to h then Z(wp) = h(p) and ρ(wp) = p and so we
extend w = w1...wk with wk+1 = wp.

To see that the strategy ζ is winning observe that, thanks to the invariant, for every
infinite ζ-play π = (v1, q1)(v2, q2)... there exists an infinite path w = w1w2... in N such that
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Z(wi) = vi and ρ(wi) = qi for all i. Thus, ∃ve wins π because ρ is accepting. This completes
the proof of (3).

D.3 Lower Bound Proof of Theorem 22
We establish the following lower bound.

▶ Lemma 30. ML-separability of µML-formulae over T3 is 2-ExpTime-hard.

The proof is a reduction of the word problem for languages recognized by exponentially
space bounded, alternating Turing machines, which we introduce next.

An alternating Turing machine (ATM) is a tuple A = (Q,Θ,Γ, q0,∆) where Q = Q∃⊎Q∀
is a finite set of states partitioned into existential states Q∃ and universal states Q∀. Further, Θ
is the input alphabet and Γ is the tape alphabet that contains a blank symbol blank /∈ Θ,
q0 ∈ Q∀ is the initial state, and ∆ ⊆ Q× Γ×Q× Γ× {L,R} is the transition relation. We
assume without loss of generality that the set ∆(q, a) := {(q′, a′,M) | (q, a, q′, a′,M) ∈ ∆}
contains exactly zero or two points for every q ∈ Q∃ ∪Q∀ and a ∈ Γ. Moreover, the state q′

(in the transition (q, a, q′, a′,M)) must be from Q∀ if q ∈ Q∃ and from Q∃ otherwise, that
is, existential and universal states alternate. A configuration of an ATM is a word wqw′

with w,w′ ∈ Γ∗ and q ∈ Q. We say that wqw′ is existential if q is, and likewise for universal.
Successor configurations are defined in the usual way. Note that every configuration has
exactly zero or two successor configurations. A computation tree of an ATM A on input w is
a (possibly infinite) tree whose nodes are labeled with configurations of A such that

the root is labeled with the initial configuration q0w;
if a node is labeled with an existential configuration wqw′, then it has a single successor
which is labeled with a successor configuration of wqw′;
if a node is labeled with a universal configuration wqw′, then it has two successors which
are labeled with the two successor configurations of wqw′.

An ATM A accepts an input w if there is a computation tree of A on w in which every
branch is infinite.1 It is well-known that there are 2n-space bounded ATMs which recognize
a 2-ExpTime-hard language [8], where n is the length of the input w.

Let A = (Q,Θ,Γ, q0,∆) be such a 2n-space bounded ATM and w = a0 . . . an−1 be an
input of length n. We will provide formulae φn, φ

′
n and signature σ such that

φn, φ
′
n are joint -m

σ -consistent for every m ∈ N iff A accepts w.

This suffices by the Equivalence (Base). The signature σ consists of a, z, and propositions cα

for every possible cell content α of A, that is, α ∈ Γ ∪ (Q× Γ). Additionally, φn and φ′
n will

use auxiliary propositions to encode counters. Both φn, φ
′
n will use the family of formulae

ψi, ψ
′
i defined in Lemma 28. More precisely, the formulae φn, φ

′
n will be of the form

φn = ψn ∧2nχ

φ′
n = ψ′

n ∧ χ′

The only purpose of χ′ is to mention the propositions in σ; the main work is done by ψn, ψ
′
n, χ.

To see what χ achieves consider models M,M′ witnessing joint -m
σ consistency of φn, φ

′
n

for some sufficiently large m ≥ n. By Lemma 28, there are points w0, . . . , w2n−1 in M and

1 This is a slight variation of the more standard acceptance condition in terms of accepting and rejecting
states. It is, however, easily seen to be equivalent.
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Ti universal conf.

existential conf. universal conf.
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Figure 3 Computation tree of A, repeated.

ŵ in M′ which are linked by a (σ,m − n)-bisimulation. The idea is now that χ enforces
below each wi (the encoding of a) computation tree Ti of A on input w. The structure of
these computation trees can easily be enforced using standard techniques. The challenge will
be to synchronize successor configurations for which we exploit the mentioned bisimilarity
between the wj . We start with detailing the structure of the trees.

Configurations of A are encoded by paths of length 2n in which each points is labeled
with exactly one cα.
Since accepting computations are infinite, it is convenient to enforce that every point
has a successor. Moreover, along the infinite path we maintain a counter that counts
modulo 2n and thus dissects the path into pieces of length 2n. Let’s call this counter the
C-counter.
According to the structure of computation trees, every other 2n points, the tree has
outdegree two.

As mentioned before, the challenge is to coordinate successor configurations, and we rely on
the bisimilarity of all wi to do so. More precisely, we maintain an additional counter, the
B-counter, that counts modulo 2n as well. We reuse variables b0, . . . , bn−1 for this purpose;
recall that they are initialized to i at wi for all 0 ≤ i < 2n, in contrast to the C-counter
which is initialized to 0 at each wi. The idea is then to synchronize in the subtree below wi

consecutive points having C-counter 0. These points have distance 2n and correspond to the
same cell in consecutive configurations of A. Since all this is done with non-σ-propositions,
this coordination is not “visible” across different subtrees below the wi.

We will now provide χ more concretely. It is a conjunction χ = χ0 ∧ 2∗χ1. Here, χ0
initializes the C-counter to 0 using propositional variables c0, . . . , cn−1 and marks the first
configuration as universal (recall that q0 ∈ Q∀) using proposition p∀ as follows:

χ0 = ¬c0 ∧ . . . ∧ ¬cn−1 ∧ p∀.

Formula χ1 in turn is a conjunction of several formulae. Note that due to the 2∗ in χ

all formulae below are intended to hold in the entire subtree below wi. One conjunct is
responsible for incrementing the counters modulo 2n. This is really standard, so we refrain
from detailing it. Another conjunct is 3⊤ to enforce infinite trees. The most important
conjunct is responsible for the synchronization and enforcing the structure of the computation
tree. The structure of tree Ti below wi is depicted in Figure 3. Universal configurations are
marked with proposition p∀ while existential configurations are marked with pi

∃, i ∈ {1, 2},
depending on the number of the successor configuration. Points shown as ◦ mark the
beginning of a configuration, that is, where the C-counter is 0.

Below, we will use (C = i) (or similar expressions) as an abbreviation for the combination
of the propositions c0, . . . , cn−1 that encode value i. We next enforce the structure of the
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computation tree:

(C < 2n − 1) ∧ p∀ → 2p∀ (†)
(C < 2n − 1) ∧ pi

∃ → 2pi
∃ i ∈ {1, 2}

(C = 2n − 1) ∧ p∀ → 2(p1
∃ ∨ p2

∃)
(C = 2n − 1) ∧ pi

∃ → 2p∀ i ∈ {1, 2}
(C = 2n − 1) ∧ p∀ → 3z ∧3¬z

These implications enforce that all points which represent a configuration satisfy one of
p∀, p

1
∃, p

2
∃ indicating the kind of configuration and, if existential, also a choice of the transition

function. The symbol z ∈ Σ enforces the branching.
The initial configuration on input w = a0 . . . an−1 is enforced by

cq0,a0 ∧3(ca1 ∧3(ca2 ∧ (. . . ∧3(can−1 ∧3χblank) . . .)),

where χblank enforces label cblank until the end of the configuration (we omit the details).
To coordinate successor configurations, we associate with M functions fi, i ∈ {1, 2}

that map the content of three consecutive cells of a configuration to the content of the
middle cell in the i-the successor configuration (assuming an arbitrary order on the set
∆(q, a), for all q, a). In what follows, we ignore the corner cases that occur at the border
of configurations; they can be treated in a similar way. Clearly, for each possible triple
(α1, α2, α3) ∈ (Γ ∪ (Q× Γ))3, the ML-formula φα1,α2,α3 = cα1 ∧3(cα2 ∧3cα3) is true at an
points v of the computation tree iff v is labeled with cα1 , a successors u of v is labeled with
cα2 , and a successors t of u is labeled with cα3 . In each configuration, we synchronize points
with B-counter 0 by including for every (σ1, σ2, σ3) and i ∈ {1, 2} the following implications:

(B = 2n − 1) ∧ (C < 2n − 2) ∧ φα1,α2,α3 ∧ p∀ → 2q1
f1(α1,α2,α3) ∧2q2

f2(α1,α2,α3)

(B = 2n − 1) ∧ (C < 2n − 2) ∧ φα1,α2,α3 ∧ pi
∃ → 2qi

fi(α1,α2,α3)

At this point, the importance of the superscript in p∗
∃ becomes apparent: since different

cells of a configuration are synchronized in different trees Tk the superscript makes sure
that all trees rely on the same choice for existential configurations. Propositions qi

α are
used as markers (not in σ) and are propagated for 2n steps, exploiting the C-counter. The
superscript i ∈ {1, 2} determines the successor configuration that the symbol is referring to.
After crossing the end of a configuration, the symbol α is propagated using propositions q′

α

(the superscript is not needed anymore because the branching happens at the end of the
configuration, based on z).

(C < 2n − 1) ∧ qi
α → 2qi

α

(C = 2n − 1) ∧ p∀ ∧ q1
α → 2(z → A′

α)
(C = 2n − 1) ∧ p∀ ∧ q2

α → 2(¬z → q′
α)

(C = 2n − 1) ∧ pi
∃ ∧ qi

α → 2q′
α i ∈ {1, 2}

(B < 2n − 1) ∧ q′
α → 2q′

α

(B = 2n − 1) ∧ q′
α → 2qα

For those (q, a) with ∆(q, a) = ∅, we add the conjunct

¬cq,a.

The following lemma establishes correctness of the reduction.
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▶ Lemma 31. The following conditions are equivalent:
1. M accepts w;
2. φn, φ

′
n are joint -m

σ -consistent for every m ∈ N.

Proof. “1 ⇒ 2”. If M accepts w, there is a computation tree of A on w. We construct two
modelsM |= φn andM′ |= φ′

n such thatM -σ M′ (which implies joint -m
σ -consistency for

every m). Let M̂ be the infinite tree-shaped model that represents the computation tree of
A on w as described above, that is, configurations are represented by sequences of 2n points
and labeled by p∀, p

1
∃, p

2
∃ depending on whether the configuration is universal or existential,

and in the latter case the superscript indicates which choice has been made for the existential
state. Finally, the first points of the first successor configuration of a universal configuration
is labeled with z. Observe that M̂ interprets only the symbols in σ as non-empty. Now, we
obtain models Mk, k < 2n from M̂ by interpreting non-σ-symbols as follows:

the C-counter starts at 0 at the root and counts modulo 2n along each path starting in
the root;
the B-counter starts at k at the root and counts modulo 2n along each path starting in
the root;
the auxiliary concept names of the shape qi

α and q′
α are interpreted in a minimal way so as

to satisfy the implications starting from (†). Note that, by definition of these implications,
there is a unique result.

Now, M′ is defined as follows:

start with a path of length n in which each node satisfies a,
add one successor satisfying ¬a,¬c and one successor satisfying ¬a, c to each node in the
path, and
at the end ŵ of the path, attach a copy of M̂ .

Next, obtain M from the Mk as follows:
Start with a full binary tree M0 of depth n,
add one successor satisfying ¬a to each node in the tree,
interpret propositions b0, . . . , bn−1 in a way such that the B-counter values of the 2n

leaves w0, . . . , w2n−1 (of the original binary tree) range from 0 to 2n − 1, and
attach at each leaf wk the tree Mk.

It can be verified that the reflexive, transitive, and symmetric closure of
all pairs (u, v) for points u satisfying a in M at level i and points v satisfying a in M′ at
level i,
all pairs (u, v) for points u satisfying ¬a in M at level i and points v satisfying ¬a in
M′ at level i, and
all pairs (v, v′), with v in M̂ and v′ a copy of v in some tree Mk

witnesses M -σ M′.
“2 ⇒ 1”. Suppose φn, φ

′
n are joint -m

σ -consistent for every m ∈ N. Since we work
over models of finite outdegree and due to the form of φn, φ

′
n (they do not contain any

“eventualities” 3∗ψ and no other fixpoints), we can construct in a standard way (by ‘skipping
bisimulations’) models M |= φn and M′ |= φ′

n such that M -σ M′. By Lemma 28, there
are pairwise σ-bisimilar points w0, . . . , w2n−1. That is, the trees starting at w0, . . . , w2n−1
are bisimilar. Since these trees are additionally models of χ0∧2∗χ1 it follows that in the tree
below wk, the cell contents of the (2n−k)-th cell is coordinated, between any two consecutive
configurations. Overall, all cell contents are coordinated and thus all trees below some wk

contain a computation tree of A on input w (which is solely represented with σ-symbols).
Thus A accepts w. ◀
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We show next that MLσ-separability reduces to modal separability which is the problem
whether two given φ,φ′ ∈ ML have an ML-separator, so without any signature restriction.
This means that the hardness proved in Theorem 22 does not depend on having the signature
available in the input.

▶ Lemma 32. For any d ≥ 3, there is a polynomial time reduction of ML-separability of
µML-formulae over Td to modal separability of µML-formulae over Td.

Proof. Let d ≥ 3 and φ,φ′ ∈ µML and σ be a signature. We construct µML-formulae φ̂, φ̂′

such that, over Td,

φ,φ′ are MLσ-separable iff φ̂, φ̂′ are ML-separable. (†)

Let σφ = sig(φ) \ σ and σφ′ = sig(φ′) \ σ, respectively, be the sets of all propositions that
occur in φ, respectively φ′, but not in σ. Let o be a fresh proposition (o as in “original”);
this means that we extend the set Prop by o. Then,

φ̂ = o ∧ h(φ, σφ)
φ̂′ = o ∧ h(φ′, σφ′)

where h(ψ,Q) is the formula obtained from ψ by
first replacing each subformula 3θ with 3o ∧2(o→ 3(o ∧ θ)) and each subformula 2θ
with 2(o→ 2(o→ θ)),
replacing each subformula of the shape p for p ∈ Q with 3(¬o ∧3∗p).

Intuitively, in the first step h relativizes ψ to o and “skips” every second level, and the second
step replaces irrelevant propositions by something not modally definable and not visible in
the o-relativization. Clearly, the size of h(φ,Q) is polynomial in the size of its inputs. We
show correctness of the construction (†).

For “⇐”, suppose that φ,φ′ are not MLσ-separable. By Equivalence (Base), for every
n ∈ N, there are models Mn |= φ,M′

n |= φ′ with Mn -n
σ M′

n. We construct models
Nn |= φ̂,N ′

n |= φ̂′ with Nn -2n N ′
n as follows. The model Nn is obtained from Mn as

follows:
introduce copies u′ for every points u in Mn;
make u′ a successor of u and each successor of u (in Mn) a successor of u′ (in Nn);
make all points and their copies satisfy o;
add an infinite path satisfying ¬o everywhere to every original point u.
if an original points u satisfied p in Mn for some p ∈ σφ, then it does not do so anymore
in Nn. Instead, p is made true on the infinite path starting in u at depth 2n+ 1.

The model N ′
n is obtained analogously from Mn. Using the game theoretic semantics of

µML it is not hard to show that:
Claim. Nn |= h(φ, σφ) and N ′

n |= h(φ, σφ′).
Let S be the (σ, n)-bisimulation witnessing Mn -n

σ M′
n. Based on the fact that, by

construction of Nn,N ′
n, no proposition from σφ ∪σφ′ appears in the first 2n levels of Nn,N ′

n,
it is not difficult to verify that S′ defined as the union of

S ∪ {(u′, v′) | (u, v) ∈ S}

and all pairs (u′, v′) such that there is an (u, v) ∈ S and u′ and v′ both lie in the same distance
at most 2n to u and v on the outgoing path starting in u and v, witnesses Nn -2n N ′

n.
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For “⇒”, suppose that φ̂, φ̂′ are not ML-separable. By Equivalence (Base), for every
n ∈ N, there are models Mn |= φ̂,M′

n |= φ̂′ with Mn -2n M′
n. Note that we can assume

without loss of generality that no proposition from σφ ∪ σφ′ is satisfied in the first 2n levels
of Mn,M′

n (otherwise just push it down arbitrarily far). We can also assume that from a
point not satisfying o we never a point satisfying o. Indeed, as we relativized our formulae to
o, we can just obtain a new model from Mn that makes o in every subtree rooted at a point
not satisfying o and the new model will still be a model of φ̂. Finally, we can assume that,
in even levels,2 every point satisfying o has at most one successor satisfying o (this can be
easily verified based on the replacement rules for 3ψ and 2ψ). Given an points u satisfying
o at an even level, we denote with u′ its unique successor satisfying o (if it exists).

We construct models Nn |= φ,N ′
n |= φ′ such that Nn -n N ′

n as follows.
The domain of Nn is the smallest set N such that:

N contains the root of Mn, and
if u ∈ N then N contains also all successors of u′ (in Mn) that satisfy o.

For p ∈ σ and u ∈ Nn, we have Nn, u |= p iff Mn, u |= p,
For p ∈ σφ and u ∈ Nn, we have Nn, u |= p iff Mn, u |= 3(¬o ∧3∗p),

The model N ′
n is constructed analogously from M′

n. Using the game theoretic semantics of
µML it is not hard to show that:
Claim. Nn |= φ and N ′

n |= φ′.
Let S be any 2n-bisimulation witnessing Mn -2n M′

n. It is routine to verify that the
restriction of S to Nn ×N ′

n witnesses Nn -n
σ N ′

n. ◀

2 The root is on even level 0.
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